Journal of the Korean Society of Oceanography
Vol. 34, No. 1, pp. 22—35, March 1999

An Analytical Model of Co-oscillating Tide under Frictional
Effect in the Yellow Sea

SOk KUH KANG, JONG YUL CHUNG', YONG Q. KANG® AND SANG-RYONG LEE’
Coastal and Harbour Engineering Research Center, Korea Ocean Research and Development Institute,
Ansan P.O. Box 29, Seoul 425-600, Korea
'Department of Oceanography and Research Institute of Oceanography, Seoul National University,
Seoul 151-742, Korea
*Department of Oceanography, Bukyung National University, Pusan 608-737, Korea
*Department of Marine Sciences, Pusan National University, Pusan 609-735, Korea

The response of the tidal waves to friction effect is investigated in terms of deformation of
Kelvin and Poincare modes. The 1st Poincare mode does not exist over the low frequency region

less than the . critical frequency of omega ©<N2f, with yf=0.0, but the mode comes to exist in
the presence of friction. When friction exists and its magnitude increases, the wave number increases,
indicating that the wave length of the Poincare mode becomes increasingly short with increasing
friction. The damping coefficient gradually increases with increasing friction over the high frequency
region, but the trend is reversed over the low frequency region. In case of Kelvin wave the present
study substantiates the characters of Kelvin wave examined by Mofjeld (1980) and Lee (1988).
Based on the examination of frictional effects on the tidal wave propagation, the co-oscillating tides
in the Yellow Sea are examined by considering both the head opening and bottom friction effects.
As friction is introduced and increased in addition to partial opening at bay head, the location of the
amphidromic point near the Shantung Peninsula moves more southwestward. This southwestward
movement of the amphidromic point is increasingly compatible with the observed location of

Ogura’s or Nishida's tidal chart of the M, tide.

INTRODUCTION

Tidal phenomena in the seas adjacent to Korea
were investigated using . both numerical and
analytical methods (Ogura, 1933; Defant, 1960;
Nishida, 1980; Choi, 1980, 1990; Kang, 1984;
Kang et al., 1991, 1998). The tidal waves passing
through the Ryukyu Islands experience deformation
at the abrupt depth change from 1000—1500 m to
200 m, and the waves propagating into the Yellow
Sea are influenced by shallow depths and lateral
land boundaries and the M, semi-diurnal tide forms 4
amphidromic points in the Yellow Sea. The tidal
chart of the M, tide by Ogura (1933) is illustrated
in Fig. 1a and tidal chart by Kang et al. (1998) in
Fig. 1b.

Traditionally, the co-oscillating tides in the strait
(or channel) and bay have been analytically studied
by many researchers. The reflection of a Kelvin
wave in a rotating rectangular bay was first studied
by Taylor (1921) who solved the problem without
considering any dissipation mechanism. Since then,
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the problem has been continuously generalized by
several authors to explain the dynamics of asym-
metry of amphidromic system, in terms of head
opening, frictional effect, complexity of geometry
and energy absorption at bay head. Godin (1965)
extended the study to more complicated geometry,
consisting of three rectangular seas of constant
depth. Hendershott and Speranza (1971) showed
that an asymmetry of amphidromic system in such a
bay results from a partial absorption of an incident
power flux at the bay head. Brown (1973) showed
that an asymmetry of the amphidromic system is
possible, provided that the tidal period is shorter
than the critical period of the first Poincare’ mode.
Rienecker and Teubner (1980) studied the modi-
fication of Taylor's problem by considering the
effect of friction in the analysis. They, however,
didn’t consider the deformation of XKelvin and
Poincare waves under friction. The Taylor problem
for a finite channel, with friction and an open
boundary condition incorporated, was investigated
by Fang et al. (1991). In the study the asymmetry of
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amphidromic system by mutual effects of both
friction and head opening was not examined.
Among others the asymmetry of the amphidrome in
the south of Shantung Peninsula in the Yellow Sea
was investigated by Kang (1984) in terms of a
partial penetration of the tidal energy through the
opening in the head. The friction effect was not
introduced in his study, even though the tidal
energy dissipation by bottom friction is also
expected to contribute to the asymmetry of the
amphidromic system.

As outlined above, both the frictional and head
opening effects should be taken into consideration
simultaneously, in order to explain the asymmetry
of the Yellow Sea more realistically. Therefore, this
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paper aims at investigating the asymmetry of the
amphidromic system of the co-oscillating tidal
waves in the Yellow Sea, by considering both the
friction and head opening effects simultaneously.
We also examine the varying characteristics of tidal
waves (especially Poincaré wave) in terms of the
dispersion relation for each mode by the friction
effect.

GOVERNING EQUATION AND
BOUNDARY CONDITIONS

Governing equation and boundary conditions

We consider the linear motion of tidal waves for

Fig. 1. (a) The co-tidal line (lunar hour) of the M, tide from Ogura (1933). A rectangular bay of 6 km wide with an open
boundary of 200 km long at the head is also presented. (b) Computed M, tidal chart from Kang ef al. (1998). Solid line de-
notes co-amplitude line (cm) and dotted line co-tidal line (lunar hour).
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a homogeneous, rotating fluid condition (See Fig.la
for model geometry). The so-called linearized long
wave equations (LeBlond and Mysak, 1978) for a
homogeneous, rotating fluid with linearized friction
can be represented as an alternative form. For the
sake of convenience we introduce the linearized
mass flux vector by U= iU+ jV, which variables
appear after integrating the linearized long wave
momentum equations vertically, where

U=uH (1a)
V=vH (1b)

with u, v, H being x and y components (Fig. 1a) of
particle velocity and water depth, respectively. Then,
the integrated long wave equations become

oU _ _ o1 _

> H = + V- (2a)
%lt] Ha—”+ V- (2b)
W, av

L4 G S0 (20)

where 1, g, f,y denote surface disturbance, gravity
acceleration, Coriolis parameter and the linear bot-
tom friction coefficient, respectively. The lineariza-
tion of quadratic friction is described in Bowden
(1983) and also briefly in Kang (1995). Mani-
pulation of the above (2) yields equations in relation
to n as follows (see Kang (1995) for details of
derivation).

ot ot

which is the governing equation for the surface
disturbance of tide. Now U and V in terms of 7 can
be derived as follows.

d g d
9 2 .
[at-i-yJ +forU= (ata +f +y j n (3b)

2
9 , # 2. .9
[af’ﬂ Tv= gH(aza ax+7ay]" (3¢)

The boundary conditions consist of the lateral and
head boundary conditions. The lateral boundary
condition is that on each of the two lateral walls of
the channel the velocity in x-direction must vanish.
This condition implies, in view of (3b), that, U=0

2 K
{i+ y) +7 Ll =gi (a + y]Wn (32)

atx=0and b

2 0. 2 (3, Yo, an_
(atax+ ay+”ax)”_[at+”) x T =0®

Along the open boundary at the bay head we utilize
the radiation condition by Proudman (1941) which
was used in a rectangular bay with an energy
absorbing barrier by Hendershott and Speranza
(1971) and also successfully applied to the Yellow
Sea by Kang (1984). It is

v=An aty=20 )
We may use (5) with A= 0 along the solid boundary
and the following relation is used along the open
boundary.

2= s (6)
H

The value & reflects the rate of tidal energy passing
through the opening, and 6 is called the radiative
factor following Fang et al. (1991). The original
form of the radiation condition by Proudman (1941)
implies that 8= 1. When a partial energy is absorb-
ed in or reflected over the head region, the &
different from 1 may be used.

ANALYTICAL SOLUTIONS

Solution satisfying lateral boundary condition

Let's obtain the solution of (3a) governing 7 for
the lateral boundary condition (4). Wave solutions
which are periodic in y and ¢ can be sought in the
form

N=REn(x)e!® -1 (7

where L is the wave number in the y direction )
is the (complex) wave amplitude which varies with
the cross channel coordinate x. Substitution of (7)
into (3a) yields

dam 2 o) (P41
+4-L 0 8
2 oI n= ©)
where
B=r-io. &)
Also substitution of (7) into (4) yields
dn an Sfil —~
0 10
o g (10)
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which is satisfied on x=0, b. The general solution
of (8)is

n=Asina’ x+Bcosa’ x an
where
OC'2= (_iw)(ﬂa_l_fz) i (12)
gHp

With substitution of (11) into (10), for two resultant
equations satisfied on x=0, b, to have nontrivial
solutions for A and B, the coefficient determinant of
the equations for A and B must vanish, which yields,
after some manipulation

sino” bl o’ — fL* = sina’ b(“' +%)
o

There are several choices for (13). Let us consider
the choices in turn.

Poincaré mode solution

The equation

sinoe” b=10 (14)
can be satisfied if o¢” satisfies

o'=nmwb, n=1273---. (15)

The general solution (11) (Kang, 1995) can be repre-
sented as

np = i FLasin™ T x+ o Boos 2% (16a)
a,, b b

where o, =i—”-b£ —ia’ (16b)

The wave solution of (7), then, express 1 as follows.

N=REp(x) &~ =RE [Z (x, y ) e-iomesat (17)
Then, Z.(x, y) is expressed as

iLny ’
Zp (x,y)zG"e—, Bor, cos 2 x4 fLn sin2 % x
o B b b
(18)

where L, and ® are determined from next dispersion
relation

—gH L2+ (B*+ f2)i o— ”;’f gH B=0 (19)

Even though Rienecker and Teubner (1980)
derived the dispersion, they used the relation only
for obtaining analytical solution of co-oscillating
tides in closed bay and they didn't examine the
general character of the dispersion relation. There-
fore, we examine the dispersion relation in some
details.

In order to examine the dispersion relation of
Poincare mode, let L, =RE(L,)+IM(L,)i, where
RE denotes real part and IM imaginary part. For this
mode to propagate in the mouth of the bay or in the
negative y, the solution having the negative real
value in (19) should be chosen, or

RE(Ln)=

PP+ PP+ DT

+ (@ @+ P-)=(P+ DTy
+ oP(@+ P+ PP

2gH (P+ a?)V?

(20a)

and

IM(L,)=

P+ =L+ (P DT

e
b2

+ {(HP+ P-f)-(P+ oP)gH

+ P (@*+ P+ A2
2gH (P+ a?)?

2| (20b)

In contrast to the wave number when friction is
absent, this wave number has both the real and
imaginary parts. Therefore, the Poincare wave
becomes a propagating mode with a decaying factor
represented by equation (20b). The nondimensional
wave number (R,RE(L;)) and decaying factor
(R;IM (L)) are plotted against nondimensional wave
number (@/f) for the 1st Poincare mode in Fig. 2,
and in Fig. 3 for the 2nd Poincare mode, for
northward (positive direction) and southward (nega-
tive direction) propagating modes. The critical
frequency @.(= 2n/critical period (7)) is the
frequency with which L,_ ;= 0.0 in (19) for y=0.0.
Fig. 2 shows that the 1st Poincare mode does not exist
over the low frequency region less than the critical
frequency of @<V2f, with 9/f= 0.0, but the mode



26 Sok Kuh Kang, Jong-Yul Chung, Yong Q. Kang and Sang-Ryong Lee

5.0
—~
~ for positive direction
& 25 v/
o — o0
- —— — 0.4
@ —-— 02
o 0.0+ .
c -——- 05
g — — 10

——————— 1.5

g -2.5 == Ty e 2.0
= for negative direction

-5.0 T T T

00 05 106 15 20 25 30 35 40
Wave frequency,
{(a)

L
7

for positive direction

—0.5
— 1.0

~1.5 for negative direction

Damping coefficient, Rim(L,)

T T T T T T
0.0 Q.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Wave frequency, L

® s

Fig. 2. Wave numbers (a) and damping coefficients (b) of
the 1st Poincare mode (L) subject to bottom friction. The
wave numbers and damping coefficients, non-dimen-
sionalized by Rossby radius of deformation R, are shown
against non-dimensional frequency for various values of
frictional coefficient (¥ f).

comes to exist in the presence of friction. Also when
y/ f= 0.0, the mode in the high frequency region over
critical frequency propagates without damping. When
friction exists and its magnitude increases, the wave
number increases. This means that the wave length of
the Poincare mode becomes increasingly short with
increasing friction. The damping coefficient gradually
increases with increasing friction over the high
frequency region, but the trend is reversed over the
low frequency region. This kind of behavior in wave
number and damping coefficient still persists in the
2nd Poincaré mode as shown in Fig. 3. One thing to
note is that the magnitude of damping in the 1st
Poincaré mode at given frequency is larger than that
of the 2nd Poincaré mode, which implies that the 2nd
mode decays more rapidly.

Kelvin mode solution

The second case satisfying (13)

27 2
2 L2,

g
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Fig. 3. Wave numbers (a) and damping coefficients (b) of
the 2nd Poincare mode (L,) subject to bottom friction.
The wave numbers and damping coefficient, non-di-
mensionalized by Rossby radius of deformation R, are
shown against non-dimensional frequency for various
values of frictional coefficient (7 f).

is divided into two relations, or

a’ =+%L (21b)
o = _L (21c)

There exist two solutions satisfying (21a) and (21b),
respectively, and superposition of the solutions for
the first and second relations yields Kelvin wave
solution

M) =Zg(r,y)=Moe ™ #7074l e Ly

(22)
where o, and o" are defined as follows.
i
o =-ia’ =—sz (23a)
B;
o =—ia = —i& (23b)

B

L, and L, are solutions of the following dispersion
relation

o fA?_ B
2= 7 = (la))———gHﬁ L? (24)

o
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The further mathematical analysis of dispersion
relation (24), with L=RE(L)+IM(L),, is not further
attempted, because Mofjeld (1980) studied the
characteristics in details and Lee (1988) and Kang
(1995) also examined the character of the relation.
However, the some aspects of the dispersion,
following Kang (1995), are shortly reviewed in
order to help to interpret the characteristics of co-
oscillating tide in application part later.

Because of the existence of friction, L has an
imaginary part. Therefore, the Kelvin wave propa-
gates with damping, as it moves northward or south-
ward. The nondimensional wave numbers (R, RE (L))
and damping coefficients (R;IM (L)) for the northward
(positive direction) and southward (negative direc-
tion) propagating Kelvin waves are plotted against
nondimensional wave number (@/f) in Fig. 4. The
figure shows that the along-channel wave num-
bers increase, as friction increases. This means that
the wave length of the Kelvin waves become
increasingly shortened with increasing friction. The
damping (decaying) coefficients gradually increase
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Fig. 4. Along-channel wave numbers (a) and damping
coefficients (b) of the Kelvin waves subject to bottom fric-
tion. The wave numbers and damping coefficients, non-di-
mensionalized by Rossby radius of deformation R, are
shown against non-dimensional frequency for various
values of frictional coefficient (3 f). ’

o
o

with increasing friction, which implies that as
friction increases, the waves decay more rapidly.
Note also that when y= 0, no damping (decaying)
occurs.

We proceed to consider the characteristics of ¢
and ¢, which represent the Rossby radius of defor
mation, when friction exists. (23a) and (23b) can be
represented as following form.

o, =RE (o) +IM (0;)iand o
=RE (o) +IM (04))i (25)

where ¢, corresponds to the northward or incom-
ing Kelvin mode and ¢, the southward or reflected
Kelvin mode, so that the roots satisfying RE (o; ) >0
and RE (o, )<0 have been chosen. It is interest-
ing to see that the cross-channel (x) mode comes to
have a propagating characteristic only due to the
existence of friction, through the existence of a non-
zero imaginary part. The real part is an inverse of
the Rossby radius of deformation when friction is
zero, as shown in (25). The cross-channel non-
dimensional wave numbers and damping coeffi-
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Fig. 5. Cross-channel wave numbers (a) and damping
coefficients (b) of the Kelvin waves subject to bottom fric-
tion. The wave numbers and damping coefficients, non-di-
mensionalized by Rossby radius of deformation Rd, are
shown against non-dimensional frequency for various
values of frictional coefficient (3 f).
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cients are all shown in Figs. 5a,b for opposingly
(eastward and westward) progressing waves. With
friction, the deformation radius varies and plays a
role as a damping factor for the wave propagating
toward the cross-channel; but the magnitudes of the
real parts are same for the incoming and reflected
waves. This figure shows that the damping coeffi-
cients of the cross-channel waves decrease with an
increasing friction coefficient, which means that
Rossby deformation radius is increased with increas-
ing friction coefficient.

In fact, Mofjeld (1980) pointed out that three
important effects of bottom friction on the Kelvin
wave propagation existed, which is that 1) the along-
channel wavenumber is increased and the offshore
or cross-channel wave number is non-zero, 2) the
offshore or cross-channel decay increases with an
increasing of the wave frequency, and 3) the wave
number of the Kelvin wave has no dramatic
behavior at the inertial frequency. Lee (1988) made
sure of these effects and the results from present
study substantiate such characteristics of the Kelvin
wave.

Solution satisfying head boundary condition

The solution which satisfies the boundary condi-
tion (5) at the head consists of Kelvin and Poincare’
waves (LeBlond and Mysak, 1978). A linear super-
position of Kelvin waves (22) and Poincare’ modes
(18) satisfying the boundary condition at the head
of bay is

Z(x,y)=Zg+ 2 Zp

n=1

=1, e® G—b)tily o No Re® *TiLry

hd iLny
+ g"—e,—— By, cos 2Ex+ fL, sin nEy

n=1 0n ﬁ b b
(26)
where 1, = 1o R with R being reflection coefficient.

The boundary condition of (5) at the bay head is
used to determine the reflection coefficient of the
Kelvin wave and the amplitude of the Poincare

modes. (3¢) with V=RE[Ve-i®!] yields

(Bt V=gl (ﬂ%f— fZ J @)

where Z=Z(x, y) is the surface amplitude function
and RE{Ve—i®!} denote the mass flux in the y

direction, with bar V being amplitude function of
the y mass flux. Using boundary condition (5) with
a following form

v
Y =27 at y=0 28
o at y (28)

(27) at the bay head (y=0) is

0Z 0Z
BV -0 o5 S5 b0 @

Then (29) yields, after some manipulation,

Gn| {(B+ fHA+ig BLn — gfn—”f—ﬁ COS%
1 Oy

M=

n

+ g2 (B Itig By s s

+ {(B+ fOA+igBL, —gf & YAge o' xR
—{(B+ fOA+igBL, —gf oy YAseq; (x —b) (30)

where the infinite number of the Poincare’ modes
are truncated up to the finite mode number N. The
reflection coefficient of the Kelvin wave and the
amplitude G, of the Poincare’ modes can be deter-
mined by the collocation method used by Brown
(1973) or the Galerkin technique by Rienecker and
Teubner (1980). The equation (30) was solved by
the collocation method in this study and matching at
(N+1) points is required to get G, from n=1 to N
and R. The bay head can be modelled by assigning
different values of o according to the configuration
of the bay head.

APPLICATION TO CO-OSCILLATING.
TIDE IN BAY AND IN THE YELLOW
SEA

Friction effect on co-oscillating tides in closed bay

We investigate the friction effect on the co-
oscillating tide for a bay whose head is completely
closed. The bay is assumed to be 600 km wide and
50 m deep, and the Coriolis parameter is evaluated
at 36 N. The amplitude of the incident Kelvin wave
is assumed to be 1 m. The dimensions of the bay are
the same as for the Yellow Sea (Fig. 1a). The
periods of the tidal waves are 12.42 and 24 hours,
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Fig. 6. Tidal chart of the M, tide in a rectangular bay of
600 km wide, 1000 km long, and 50 m deep. The result is
for friction coefficient y= 0.0. Co-tidal line in lunar hours
is denoted by dashed line and co-amplitude line in meter
is denoted by solid line.

corresponding to the periods of the M, and diurnal
tides. The tidal charts in the following figures are
obtained by plotting the solutions of (30).

Fig. 6 shows the tidal charts for the M, tide in the
bay when friction does not exist. The co-amplitude
line is denoted by solid lines and the co-tidal lines
by dotted lines in the figure. As Kang (1984)
computed, the critical period of the first Poincare
mode is 12.1 hours. Since the period of the M, tide
is larger than the critical period, the reflection
coefficient |R|=1 and the amphidromic system is
almost symmetric. However, the co-amplitude pat-
tern is quite complicated. It is due to the con-
tribution by the Poincare mode whose e-folding
distance is 688 km, which is large enough to
influence the whole bay of the Yellow Sea. Fig. 7 is
the tidal chart for M, tide for y=10°s"(y/f=0.1).

Fig. 7. As in Fig. 6 except for y= 10751,

It is clear that, as friction is introduced, the
symmetry of the amphidromic system disappears.
Amphidromic points move toward the wall along
which the reflected Kelvin waves propagate. As
indicated in Fig. 2, the Poincare mode correspond-
ing to the M, frequency propagates along the
channel due to the existence of the friction.

As the friction effect is increased (Kang, 1995),
the amphidromic point appearing near the center of
the bay disappears completely. Also the incoming
wave is shown to decay toward the bay head.
In other words, due to severe dissipation of the
incoming Kelvin wave, the energy of the reflected
wave is greatly reduced. Further, the reflected wave
is also severely dissipated during the southward
propagation. Therefore, the reflected Kelvin wave
disappears almost near the mouth of the bay and the
solution consists of only an incident Kelvin wave.
That is why the amphidromic point almost dis-
appears there. The e-folding distances of Poincare
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waves for the band of M, tide frequency also
become smaller with increasing friction, as indicat-
ed in Fig. 2.

The damping coefficients of the Poincare waves
for the band of diurnal tides, for the non-
dimensional range of friction, less than 1 or so in
Fig. 2, are larger than those for the band of semi-
diurnal tide. In other words, the e-folding distance
of the Poincare mode for the diurnal tide is much
less than that for the semi-diurnal tide. Con-
sequently, the amphidromic system of the diurnal
tide with y= 0 is less complicated than that of the
semi-diurnal tide in Fig. 6, because there is less
contribution from the Poincare modes. The sym-
metry of the amphidromic system gradually dis-
appears as friction is introduced and, for y= 107451
(not shown here), the amphidromic point finally

lands on the wall along which the reflected Kelvin |

wave propagates. The damping coefficients of the
Kelvin waves over the band of diurnal tides for the
relatively large range of friction are less than those
for the Kelvin waves over the band of semi-diurnal
tides, as shown Fig. 4. This means that, as friction is
sufficiently increased, the Kelvin wave in the band
of diurnal tide experiences less damping than the
Kelvin wave in the higher frequency band.

Head opening effect on co-oscillating tides

Even though some characters of head opening
were studied by Kang (1984), the head opening
effect is shortly examined as an intermediate step to
investigate both the frictional and head opening
effects in the bay, since both effects have not been
studied simultaneously. The analytical solution is
applied to the Yellow Sea with a view to inves-
tigating the effects of various head openings. Figs. 8
and 9 are the tidal charts of the M, tide for two
different head configurations, but the friction effect
is not considered in order to clarify the head open-
ing effect. The head of the bay in Fig. 8 consists of
a solid boundary of 500 km and open boundary of
100 km. The head of the bay in Fig. 9 consists of a
solid boundary of 300 km and an open boundary of
300 km. The A value in equation (6) is the exact
value corresponding to the depth of 50 m, which
is less than the value of A= 0.5s"lused by Kang
(1984).

The results are as follows: First, as the opening
area in the bay head is increased, the contribution
by the Poincare mode and reflection coefficient are

Fig. 8. Tidal chart of the M, tide in a rectangular bay
with opening at its head. The head configuration consists
of a solid boundary of 500 km and an open boundary of
100 km. Other parameters are the same as in Fig. 6.

both decreased (the reflection coefficients for Figs. 8
and 9 are |R|=0.303 and 0.294). In other words, the
amplitudes of the Poincare modes and the reflected
Kelvin wave are continuously decreased with in-
creasing head opening area, and finally the ampli-
tudes of Poincare modes and reflected Kelvin wave
will be zero for the full opening of head. This is due
to partial or complete penetration of incident energy
flux through the opening. Second, due fo the
decreasing contribution of the Poincare modes with
an increased opening, the solution of the co-
oscillating tide consists of mainly opposingly
progressing Kelvin modes, even near the head of
bay, except for the case of a full opening. Third, as
the contribution by the Poincare modes is decreased,
the phase lags of reflected Kelvin wave are reduced
over the process of reflection. This results in the
southward movement of the along-bay position of
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Fig. 9. As in Fig. 8 except for the head configuration of a
solid boundary of 300 km and an open boundary of
300 km.

the amphidromic point located at upper site of the
bay, to the location which is nearly a quarter of a
wave length apart from the head. This fact is
manifest when comparing the along-bay locations
between Figs. 8 and 9.

In the case of the full opening, the reflection
coefficient is equal to zero and the magnitudes of
the Poincare modes are nearly zero, which means
that the solution consists of only the incident Kelvin
wave. The exponential decrease of amplitude to-
ward the wall along which the reflected Kelvin
wave propagates and the propagation pattern from
the south reflect that there exists only an incident
Kelvin wave. This also implies that the radiation
condition of Proudman works very well.

For diurnal tide the same trend is also found as
that for the M, tide (Kang, 1995). However, as
mentioned before, the e-folding distance of the
Poincare modes in this period are much shorter than

that for the M, tide and the amplitudes of the
Poincare modes are also smaller than those for the
M, tide.

In summary, the amplitudes of the reflected
Kelvin wave and the Poincare modes are gradually
decreased with the increased widening of the open
boundary at the head. This is due to the partial
penetration of incident energy flux, as noted by
Kang (1984). Further, as the opening area at the bay
head becomes wide, the along-bay location of the
amphidromic point of the M, tide existing near
the bay head, moves southward to the position
approximately a quarter of a wavelength apart from
the head. Also, with increased widening of head
opening, the cross-bay locations of the two
amphidromic points of the M, tide nearly coincide
with each other, until they land on the wall along
which the reflected Kelvin wave travels. This is due
to the decreased contribution of Poincare modes
even near the head, since e-folding distance is
largely reduced.

APPLICATIONS TO CO-OSCILLATING
TIDES IN THE YELLOW SEA

In this section the friction effect along with head
opening effect is investigated for the more realistic
understanding of the tidal system in the Yellow Sea.
The bottom friction is especially expected to play a
meaningful role in the amphidromic system due to
the shallowness of the Yellow Sea.

The dimensions of the bay are the same as in
previous section, but the head configuration con-
sists of a solid boundary of 300 km, an open
boundary of 200 km and another solid boundary of
100 km, as schematized in Fig. 1a, which shows the
tidal chart of the M, tide edited by Ogura (1933).
The location of the amphidromic point located
below Shantung Peninsula agree with those of the
results of the numerical model done previously by
Choi (1980) and Kang et al. (1998). As shown in
previous part the character of co-oscillating tides
in the Yellow Sea is largely governed by the
magnitude of the friction coefficient. Therefore, the
proper choice of the friction coefficient is important
and the theoretical background for choosing it
should be explained. Before discussing the proper-
ness of chosen friction coefficient (3), the co-
oscillating tide is investigated for y= 0.0, 5.0107F,
1.0x 107, 2.5 % 10751, Practically when the mean
speed of M, tidal current in Yellow Sea is assumed
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to be 0.5 m/s, the friction coefficient following
Kang (1995) is 2.5 10751,

If the damping effect caused by other components
are introduced, the magnitude of the friction coef-
ficient will be slightly increased, since the damping
effect for M, is mostly dependent upon the
magnitude of itself, as investigated by Godin and
Gutierrez (1986).

Figs. 10 and 11 show the tidal charts of the M,
tide for the friction coefficient y= 0.0,2.5%x 107%s~1.
The reflection coefficients of the Kelvin wave for
the figures are |R|=0.163 and 0.212, respectively,
and the phase shifts of the reflected Kelvin wave are
decreased from 86° to 29°, respectively. As friction
is increased, the amplitudes of Poincare modes are
decreased and e-folding distances of the 1st Poin-
care mode are also gradually decreased from 688
km to 416 km.

The figures show that as friction is increased,

Fig. 10. As in Fig. 3.11 except for the head configuration

of an open boundary of 600 km.

the locations of the amphidromic points move
southwestward from 225—155 km of Fig. 10, to
145—185 km of Fig. 11. This southwestward
movement of the amphidromic point is increasingly
compatible with the location 135—220 km of
Ogura’s tidal chart of the M, tide found in Fig. la.
That is, the friction effect is shown to be necessary
in explaining the actual amphidromic system of the
M, tide more realistically, as expected. One point to
note is that the distance of westward movement of
the amphidrome by bottom friction (y=2.5x 107
s71) is almost the same as that by head opening
effect at an approximate 75 km.

It is also interesting to note that comparing Fig. 10
with Figs. 8 and 9, the amphidromic point located at
the lower part of bay has disappeared and the along-
bay location 225-—155 km of the existing am-
phidromic point is closer to the bay head than the
previous location 235—180 km of Fig. 8. Con-

Fig. 11. Tidal chart of the M, tide subject to partial open-
ing of bay head and bottom friction y= 2.5 % 107s-1.
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Fig. 12. Tidal chart of the diurnal-tide with a period of 24
hrs subject to partial opening of bay head and bottom fric-
tion y= 0.0.

sidering that the location of the upper amphidromic
point moves southward with an increasingly widen-
ing of the head, the Poincare mode still appears to
be influential in respect to the tidal system in bay.
As a result, the phase shift of the reflected Kelvin
wave is still as large as 86° (note that the phase shift
=127° with no open boundary in Fig. 6). Also the
amphidromic point located in the lower part shows
up more clearly with increasing friction.

Figs. 12, 13, 14 and 15 are the tidal charts of the
diurnal tide for y=0.0, 5107, 10, 2.5x10%s ™",
respectively. Considering the tidal range of the
diurnal tide and M, tide and assuming that the speed
of the current is proportional to the tidal ranges,
the speed of the diurnal current is about 0.3 times
as large as that of the M, tidal current. Therefore,
when the speed of the diurnal tide in the Yellow
Sea is assumed to be 0.1 m/s, the friction coeffi-
cient is

Fig. 13. As in Fig. 12 except for y=5x 10751,

_ K | | = 00025
H 50

0.1=5x 107551,

As shown in Kang (1995), the diurnal component
with lesser amplitude undergoes more severe dis-
sipation by other semi-diurnal components with
larger amplitude. Therefore, the coefficient of fric-
tion is increased 2 or 3 times larger than the
coefficient without interaction.

The reflection coefficients of the Kelvin wave for
the figures shown above are |R|=0.118 and 0.120,
and the phase shifts of reflected Kelvin wave are 14°
and 13°. As friction coefficient is increased from 0.0
to 2.5x107° s7}, the amplitudes of Poincare modes
increase slightly from 0.118 to 0.133 while the
e-folding distances of the 1st Poincare mode change
from 178 km to 181 km. This small change
according to the varying friction has been shown
around diurnal tide frequency(w’f= 0.85) in the Fig.
2b. Compared with the amplitudes and e-folding
distances in the M,, the role played by Poincare
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Fig. 14. As in Fig. 12 except for y= 10s71.

modes is expected to be small in determining the
position of the amphidromic point.

The figures illustrate that with increasing friction
(y=0.0, 5x107%, 107, 2.5x107° s7') the amphi
dromic points move slightly southwestward. The
locations of amphidromic points are 185—460 km,
175—465 km, 160—470 km, and 120—490 km,
respectively. The location of the amphidromic point
from the numerical model and Ogura's tidal chart
for K, is approximately 230—300 km. The afore-
mentioned amphidromic point is located more
eastward than that of the M, tide. It is evident that
the inconsistency for the locations between the
analytical model and the available diurnal tidal
chart increases with increasing friction. In fact, the
magnitude of the friction coefficient () is much
smaller than that of the M, tide, as shown above.
This implies that the diurnal tide is less dissipated
due to its reduced magnitude of current speed.

Considering that the e-folding distances of the 1st
Poincare mode are less than 200 km and their

Fig. 15. As in Fig. 12 except for y= 25X 10751,

amplitudes are relatively small, such a movement
must be explained mainly in terms of Kelvin waves.
The southward movement seems to be driven by a
decreased phase shift of the reflected Kelvin wave
while the westward movement is expected to be due
to the decreased amplitude of the reflected Kelvin
wave by friction toward the southward direction.

It should be mentioned that the nonuniformity of
the bottom topography will also distort the tidal
regime in the Yellow Sea. In particular the sh-
allowness near the Yangtze river would induce a
locally severe dissipation of the tidal wave, while
the irregular coastal line near the river would also
influence the propagation of tidal wave. These
effects could not be taken into consideration due to
the limitations of the present model.

SUMMARY

The bottom frictional effect to the tidal waves in
the Yellow Sea have been studied along with the
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head opening effect. In addition to head opening as
friction is introduced and increased, the location of
the amphidromic point near Shantung Peninsula
moves southwestward. This southwestward move-
ment of the amphidromic point is increasingly
compatible with the observed location of Ogura’s
tidal chart of the M, tide, implying that the inclusion
of the friction effect is necessary to explain the
actual amphidromic system of the M, tide more
realistically. The results show that the distance of
the westward movement of amphidrome by bottom
friction (y=2.5x 1075s-1) is almost the same as
that by the head opening effect at an approximate 75
km. It was also found that the westward movement
of amphidromic point near the head with increasing
friction is caused by the increased dissipation and
decreased e-folding distance of the Poincare modes.
The southward movement of the amphidromic point
is driven by both the decrease of phase shift of
the reflected Kelvin wave and the decreasing role
of the Poincaré mode, with increasing friction
effects.

The dispersion relation of tidal waves have been
examined under friction effect. The 1st Poincaré
mode does not exist over the low frequency region

less than the critical frequency of @<\2f, with
¥ f=0.0, but the mode comes to exist in the
presence of friction. When friction exists and its
magnitude increases, the wave number increases,
indicating that the wave length of the Poincaré
mode becomes increasingly short with increasing
friction. The damping coefficient gradually in-
creases with increasing friction over the high fre-
quency region, but the trend is reversed over the
low frequency region. This kind of behavior in
wave number and damping coefficient still persists
in the 2nd Poincaré mode. The magnitude of
damping in the 1st Poincaré mode at given
frequency is larger than that of the 2nd Poincare’
mode. In case of Kelvin wave the present study
substantiate the characters of the Kelvin wave
examined by Mofjeld (1980) and Lee (1988).
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