• Title/Summary/Keyword: tidal power

Search Result 354, Processing Time 0.029 seconds

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Tidal Dynamics and Tidal Current Power Generation in the Uldolmok Waterway

  • Kang, Sok-Kuh;Yum, Ki-Dai;Lee, Kwang-Soo;Park, Jin-Soon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.67-73
    • /
    • 2006
  • Uldolmok waterway is famous for its strong tidal current with maximum current of about 12knots, which is located between the Chindo island off the southwestern tip of Korean peninsula and mainland. A serious of field observations, along with numerical modeling, have been carried out over the last several years, in order to understand the tidal dynamics and to examine the related variables according to the tidal current power plant (TCPP) operation.

  • PDF

A Study on the Performance of Tidal Turbine by Inflow condition (유입유동에 따른 조류터빈의 성능의 변화)

  • Kim, B.G.;Yang, C.J.;Choi, M.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.154-154
    • /
    • 2012
  • Many suggestions is offered to resolve global warming. Tidal current generation is producing power by switched tidal difference sea water horizontal fluid flow produced by tidal difference using rotor and generator. So, change the angle of inflow condition due to the entrance of efficiency are considered. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for horizontal axis turbine. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, Cp was highest at TSR 5.5, especially the larger changes in the angle of inflow condition decreased efficiency.

  • PDF

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine (10kW급 상반전 조류터빈의 설계와 성능에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

Study of the Tidal Currents in Sea Areas around Gyeong-In Waterway (경인아라뱃길 주변해역의 해수유동에 관한 연구)

  • Baek, Seung Hwa;Shin, Bum-Shick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5826-5834
    • /
    • 2014
  • This paper examined the changes in flow patterns due to a blockage of tidal currents in the sea areas between Incheon North Port and Yeomha Channel when it would be influenced by the construction of the Incheon North Port Yeongjongdo dredged soil dumping ground and Incheon Bay tidal power plant. The numerical simulation was performed for three cases: before and after constructing the Incheon North Port Yeongjongdo dredged soil dumping ground and after the construction of the sea-dyke on the east side of the Incheon Bay tidal power plant. The simulation results showed that the tidal directions and currents velocity were similar before and after the construction of the Yeongjongdo dredged soil dumping ground. After the construction of the East Sea-dyke of Incheon tide power plant, however, the tidal currents patterns changed significantly due to flow blockage toward Gyeonggi Bay. The main flow was formed in the north-south direction, and the tidal currents velocity increased slightly on the downstream areas (A,B,C) of Hodo, which is the entrance of the Ara Waterway. The tidal currents at the mouth(D) of Yeomha Channel decreased significantly. The tidal currents of the west side of Se-eodo and the east side of the sea-dyke were rotary currents. The results of this study will provide basic data for the environmental impact assessment and the operation of the Gyeongin Ara Waterway.

A Study on the Design of Tidal Current Farm in the Bunamgun-do (부남군도에서의 조류발전단지 설계에 관한 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • Many efforts will have to be made on securing the stable supply of the energy due to the worldwide trend of controlling the utilization fossil fuels inducing global climate change. Renewable portfolio standard enforced to power companies over 500 MW capacity from 2012. Tidal current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop a tidal current energy conversion system(TECS) in coastal region. So, we examine a tidal in-stream energy using a numerical model and estimate a tidal current potential for commercialization of tidal current power plant in the sea of the Bunamgun-do. Available tidal energy resources is also analytically estimated using a tidal farm method and the annual energy production of an optimal TECS arrays will be calculated with taking into account interference of lateral and longitudinal spacing.

NUMERICAL METHODS FOR OPEN WATER PERFORMANCE PREDICTION OF HORIZONTAL AXIS TIDAL STREAM ENERGY CONVERSION TURBINE (조류발전용 수평축터빈의 단독성능 평가를 위한 수치 해석법)

  • Lee, J.H.;Kim, D.J.;Rhee, S.H.;Kim, M.C.;Hyun, B.S.;Nam, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.155-162
    • /
    • 2010
  • Recently, due to high oil prices and environmental pollution issues, interest of alternative energy development increases and the related research is widely conducted. Among those research activities the tidal stream power generation utilizes the tidal flow as its mechanical power resource and less depends on the environmental condition for installation and operation than other renewable energy resources. Therefore the amount of power generated is quite consistent and straightforward to predict. However, research on the tidal stream energy conversion turbine is rarely found. In the present study, two numerical methods were developed and compared for the open water Momentum Theory, which is widely used for wind turbines, was adopted. The moving reference frame method for Computational Fluid Dynamis solver were also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

A Comparison of Performance of Six and Twelve-Blade Vane Tidal Turbines between Single and Double Blade-row Types (블레이드 열의 배치에 따른 베인형 조류 수차의 성능 비교)

  • Nguyen, M.H.;Kim, J.H.;Kim, B.K.;Yang, C.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • This paper presents a study on Vane Tidal Turbine (VTT) focusing on analysis of two types of blade arrangement originated from the previous studies where the original design was examined and performance-tested for different numbers of blades (six, eight and twelve). Compared to conventional tidal turbines, VTT has several special features and potential advantages which have been being thoroughly developed. The purpose of this study is to analyze VTT's capability of extracting and converting the hydrokinetic energy of tidal currents into electricity at given arrangement of blades (single and double rows, six and twelve blades) using CFD. From the calculation results, the six-blade single row turbine shows the best performance, in which the highest power and torque coefficients reach up to about 34 % and 36 %, respectively, at TSR=0.94. However, despite of lower power coefficient, by adding more blades, the torque's extraction of twelve-blade turbine, especially the double row type, is less fluctuate than that of the six-blade setups.

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

Performance Research of Counter-rotating Tidal Stream Power Unit

  • Wei, Xuesong;Huang, Bin;Liu, Pin;Kanemoto, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • An experimental investigation was carried out to improve the performance of a counter-rotating type horizontal-axis tidal stream power unit. Front and rear blades were designed separately based on modified blade element momentum (BEM) theory, and their performances at different conditions of blade tip speed ratio were measured in a wind tunnel. Three different groups of blades were designed successively, and the results showed that Group3 possessed the highest power coefficient of 0.44 and was the most satisfactory model. This experiment shows that properly increasing diameter and reducing chord length will benefit the performance of the blade.