• Title/Summary/Keyword: through-Si-via

Search Result 186, Processing Time 0.03 seconds

Fabrication of Two-dimensional MoS2 Films-based Field Effect Transistor for High Mobility Electronic Device Application

  • Joung, DaeHwa;Park, Hyeji;Mun, Jihun;Park, Jonghoo;Kang, Sang-Woo;Kim, TaeWan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.110-113
    • /
    • 2017
  • The two-dimensional layered $MoS_2$ has high mobility and excellent optical properties, and there has been much research on the methods for using this for next generation electronics. $MoS_2$ is similar to graphene in that there is comparatively weak bonding through Van der Waals covalent bonding in the substrate-$MoS_2$ and $MoS_2-MoS_2$ heteromaterial as well in the layer-by-layer structure. So, on the monatomic level, $MoS_2$ can easily be exfoliated physically or chemically. During the $MoS_2$ field-effect transistor fabrication process of photolithography, when using water, the water infiltrates into the substrate-$MoS_2$ gap, and leads to the problem of a rapid decline in the material's yield. To solve this problem, an epoxy-based, as opposed to a water-based photoresist, was used in the photolithography process. In this research, a hydrophobic $MoS_2$ field effect transistor (FET) was fabricated on a hydrophilic $SiO_2$ substrate via chemical vapor deposition CVD. To solve the problem of $MoS_2$ exfoliation that occurs in water-based photolithography, a PPMA sacrificial layer and SU-8 2002 were used, and a $MoS_2$ film FET was successfully created. To minimize Ohmic contact resistance, rapid thermal annealing was used, and then electronic properties were measured.

Characteristics of a New Obligate Methanol-Oxidizing Bacterium (새로운 절대 메탄올 산화세균의 분리 및 특성)

  • Kim, Si-Wook;Park, Yong-Ha
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.261-266
    • /
    • 1993
  • A new methyltrophic bacterium which utilizes methanol as a sole source of carbon and energy was isolated from soil. It was Gram-negative, nonmotile, nonspore-forming rod, and strictly aerobic bacterium. Catalase and oxidase activities were present. Nitrate was reduced to nitrite. Vitamins and other growth factors were not required. Generation time was 1.6 hr under the optimal condition. The isolate assimilated methanol via the ribulose mono-phosphate pathway (Enter-Doudoroff varient) and did not have .alpha.-ketoglutarate dehydrogenase. It assimilated ammonia through glutamate dehydrogenase. The guanine plus cytosine content of the DNA was 61.0 mol%. The celular fatty acid composition was primarily straight-chain saturated $C^{16 : 0}$ acids (palmitic acids) and unsaturated $C_{16 :1}$ acid (palmitoleic acids), and the isolate also contained two unidentified $C_{17}$ branched fatty acids. The major ubiquinone was Q-8, and Q-6 and Q-7 were present as minor components. Phosphatidylethanolamine and phosphatidylglycerol were predominantly present, and diphosphatidyglycerol was also detected. Based on the physiological and biochemical properties, the isolate was assigned to a novel species of the genus Methylobacillus, Methylobacillus methanolovorus sp. nov.

  • PDF

Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns (LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Jung-Hwan;Yoo, Je-Gwang;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF

Experimental Study on Characteristics of Track Settlement Depending on Components of Ballast Track (자갈도상 궤도 구성품에 따른 궤도 침하 특성에 대한 실험적 연구)

  • Kim, Man-Cheol;Bae, Young-Hoon;Lee, Si-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.498-505
    • /
    • 2016
  • As a basic study to develop maintenance-effective optimal ballast track in preparation for upgrading a conventional line to a high speed railway, a full-scale test that combined the components of ballast track was conducted and the characteristic of track settlement was analyzed. As a result of the full-scale test, reduction in maintenance via an increase of the elasticity of only the pad was insignificant; however, the effect increased significantly with increasing of the weight of the sleeper or with increasing of the weight of the sleeper and the thickness of the ballast together with use of a pad with high resiliency. An optimal type of ballast track, in line with upgrading the speed of a conventional line, shall be developed through cost efficiency analysis considering the maintenance cost depending on the track settlement as well as the initial construction cost.

Autophagy localization and cytoprotective role in cisplatin-induced acute kidney injury

  • Karunasagara, Shanika;Hong, Geum-Lan;Jung, Da-Young;Ryu, Si-Yun;Jung, Ju-Young
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.3
    • /
    • pp.133-139
    • /
    • 2019
  • Autophagy is a fundamental cellular process that maintains homeostasis and cell integrity, under stress conditions. Although the involvement of autophagy in various conditions has been elucidated, the role of autophagy in renal structure is not completely clarified. Our aim was to investigate the cytoprotective effect of autophagy against acute kidney injury (AKI) through cisplatin deteriorative pathway, which leads to AKI via renal cell degradation. For in vivo experiments, male Sprague Dawley rats were divided in to 2 groups (n = 6/group) as control, Cis-5D. Following a single intraperitoneal injection of cisplatin, rats were sacrificed after 5 days. Blood urea nitrogen (BUN), creatinine (Cr) and histological alterations were examined. Further, expression of key regulators of autophagy, light-clain 3 (LC3), p62, and Beclin1, was evaluated by immunohistochemistry (IHC). The rats exhibited severe renal dysfunction, indicated by elevated BUN, Cr. Hematoxylin and eosin staining revealed histological damages in cisplatin-treated rats. Furthermore, IHC analysis revealed increased expression of LC3, Beclin1 and decreased expression of p62. Furthermore, expression of aforementioned autophagy markers was restricted to proximal tubule. Taken together, our study demonstrated that cisplatin can cause nephrotoxicity and lead to AKI. This phenomenon accelerated autophagy in renal proximal tubules and guards against AKI.

Comparing the "pre-COVID-19 period" and the "COVID-19 early-stage period" for emergency medical services (COVID-19 발현 초기 119 구급대를 경유해 응급실로 내원하는 환자들의 이송 시간과 호소하는 증상의 변화 : 부산지역 일개 응급의료센터로 이송된 환자의 구급활동일지를 중심으로)

  • Kang, Ji-Hun;Ji, Jae-Gu;Jang, Yun-Deok;Lee, Si-Won;Kim, Seong-Ju
    • The Korean Journal of Emergency Medical Services
    • /
    • v.24 no.3
    • /
    • pp.161-169
    • /
    • 2020
  • Purpose: This study aims to identify changes in patients' transport time and chief complaints visiting the emergency room via emergency medical services from the "pre-COVID-19 period" compared to the "COVID-19 early-stage period". Methods: This retrospective observational study analyzed the emergency medical services reports at two time periods defined by the COVID-19 virus outbreak in Korea. The study was conducted in Busan, the Republic of Korea, from January 19 through May 6, 2019. Results: The transfer time of patients transported during the "COVID-19 early-stage period" was significantly delayed compared to the "pre-COVID-19 period" (p<.05). We found a significant increase in transport time for patients complaining of respiratory infections compared to patients without symptoms (p<.05). During the "COVID-19 early-stage period", there was a significant increase in the number of patients with respiratory infections and patients complaining of general symptoms compared to the "COVID-19early-stage period" (p<.05). Conclusion: The spread of the COVID-19 virus infection delayed patient transport and increased the number of patients reporting respiratory infection symptoms. Emergency medical services will need administrative and economic support to transport the increased number of patients requiring services.

Endoplasmic Reticulum Stress-Mediated p62 Downregulation Inhibits Apoptosis via c-Jun Upregulation

  • Yu, Wenjun;Wang, Busong;Zhou, Liang;Xu, Guoqiang
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.195-204
    • /
    • 2021
  • Cereblon (CRBN), a substrate receptor of cullin 4-RING E3 ligase (CRL4) regulates the ubiquitination and degradation of c-Jun, mediating the lipopolysaccharide-induced cellular response. However, the upstream signaling pathway that regulates this process is unknown. In this study, we describe how endoplasmic reticulum (ER) stress reversely regulates sequestosome-1 (p62)and c-Jun protein levels. Furthermore, our study reveals that expression of p62 attenuates c-Jun protein levels through the ubiquitinproteasome system. Conversely, siRNA knockdown of p62 elevates c-Jun protein levels. Immunoprecipitation and immunoblotting experiments demonstrate that p62 interacts with c-Jun and CRBN to form a ternary protein complex. Moreover, we find that CRBN knockdown completely abolishes the inhibitory effect of p62 on c-Jun. Using brefeldin A as an inducer of ER stress, we demonstrate that the p62/c-Jun axis participates in the regulation of ER stress-induced apoptosis, and that CRBN is required for this regulation. In summary, we have identified an upstream signaling pathway, which regulates p62-mediated c-Jun degradation. Our findings elucidate the underlying molecular mechanism by which p62/c-Jun axis regulates the ER stress-induced apoptosis, and provide a new molecular connection between ER stress and apoptosis.

Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6

  • Oh, Gyun-Sik;Kim, Si-Ryong;Lee, Eun-Sook;Yoon, Jin;Shin, Min-Kyung;Ryu, Hyeon Kyoung;Kim, Dong Seop;Kim, Seung-Whan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.180-192
    • /
    • 2022
  • Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung;Lee, Hun Seok;Jia, Lina;Chelakkot, Chaithanya;Rajasekaran, Nirmal;Shin, Young Kee
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.413-424
    • /
    • 2022
  • Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.