• Title/Summary/Keyword: threshold velocity

Search Result 182, Processing Time 0.025 seconds

Properties of Interstellar Turbulence Driven by Localized Exploding Sources in Rotating, Vertically-stratified Disks

  • Kim, Il-Jung;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • We use three-dimensional hydrodynamic simulations to investigate the characteristics of turbulence driven in rotating, vertically-stratified disk. Our models are isothermal, and local in the in-plane direction while global in the vertical direction. We allow localized regions with density larger than the threshold value to explode and inject kinetic energy to the surrounding medium in the real space rather than Fourier space, mimicking supernova explosions thought to be the dominant turbulence source. This work extends our previous study where we studied turbulence in a non-rotating, uniform environment. We find that the galaxy rotation does not make a significant difference in the turbulence level at saturation, since the associated shear velocity is much smaller than the explosion velocity. We analyze the properties of turbulence in our models and compare them with those from the uniform-density models. We also discuss the astrophysical implication of our findings.

  • PDF

A Study on the Design of Sensory Nerve Conduction Velocity Measurement System (감각신경 전도속도 측정시스템 설계에 관한 연구)

  • Yoo, S.K.;Min, B.G.;Kim, J.W.;Kim, J.W.;Yoon, H.R.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.89-92
    • /
    • 1992
  • The sensory nerve study is the important index to diagnosis peripheral neuromyotic disease. This paper discusses about the design of parameter - latency, amplitude, conduction velocity - measurement system in the sensory nerve. This system consists of three parts which are Main Control Unit(MCU), Stimulator, and external output unit. Also new measurement algorithms which is adaptive threshold method is presented in this paper. The designed system is controlled by MCU includes automatic detection algorithms and self-diagnostic functions.

  • PDF

Using Kalman Filtering and Segmentation Techniques to Capture and Detect Cracks in Pavement

  • Hsu, C.J.;Chen, C.F.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.930-932
    • /
    • 2003
  • For this study we used a CCD video camera to capture the pavement image information via the computer. During investigation processing, the CCD video camera captured 10${\sim}$30 images per second. If the vehicle velocity is too fast, the collected images will be duplicated and if the velocity is too slow there will be a gapped between images. Therefore, in order to control the efficiency of the image grabber we should add accessory tools such as the Differential Global Positioning System (DGPS) and odometer. Furthermore, Kalman Filtering can also solve these problems. After the CCD video camera captured the pavement images, we used the Least-Squares method to eliminate images of gradation which have non-uniform surfaces due to the illumination at night. The Fuzzy Entropy method calculates images of threshold segments and creates binary images. Finally, the Object Labeling algorithm finds objects that are cracks or noises from the binary image based on volume pixels of the object. We used these algorithms and tested them, also providing some discussion and suggestions.

  • PDF

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.

Low-coherence non-scanning michelson interferometry using visible broadband light source (가시광 영역의 저간섭성 광원을 이용한 마이겔슨 간섭계)

  • 송민호;이병호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.160-167
    • /
    • 1996
  • A new pathlength deviation detection technique which is composed of michelson interferometer is described and verified experimentally. The technique uses a sub-threshold biased visible laser diode of 20$\mu$m coherence length as a low-coherent light source. And for zeroth-order fringe(which is the largest among fringes) identification we used a piezoelectric transducer with a large modulation smplitude, which enables without the need of constant velocity scanning, to distinguish reflection surfaces separated by more than 10$\mu$m with a resolution of less than half-wavelength.

  • PDF

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

Practical Pinch Torque Detection Algorithm for Anti-Pinch Window Control System Application

  • Lee, Hye-Jin;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2526-2531
    • /
    • 2005
  • A practical pinch torque estimator based on the Kalman filter is proposed for low-cost anti-pinch window control systems. To obtain the accurate angular velocity from Hall-effect sensor measurements, the angular velocity calculation algorithm is executed with additional procedures for removing the measurement noises. Apart from the previous works using the angular velocity estimates and torque estimates for detecting the pinched condition, the torque rate is augmented to the system model and the proposed pinch estimator is derived by applying the steady-state Kalman filter recursion to the model. The motivation of this approach comes from the idea that the bias errors in torque estimates due to the motor parameter uncertainties can be almost eliminated by introducing the torque rate state. For detecting the pinched condition, a systematic way to determine the threshold level of the torque rate estimates is also suggested via the deterministic estimation error analysis. Simulation results are given to certify the pinch detection performance of the proposed algorithm and its robustness against the motor parameter uncertainties.

  • PDF

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

Study on the Negligible Extent(NE) and Release Characteristic of KS C IEC 60079-10-1(2015) Standard (KS C IEC 60079-10-1 규격의 무시할 수 있는 정도와 누출특성에 관한 연구)

  • Cho, Pil-rae;Lee, Hyang-jig;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.111-117
    • /
    • 2020
  • When KS C IEC 60069-10-1(2015) standard is applied to estimate a hazardous area, the chart showing the relationship between a hazardous area distance and release characteristic is used as a guide to determine the extent of hazardous zones for various forms of release. Three release characteristic lines based on the three types of release as an unimpeded jet release with high velocity, a diffusive jet release with low velocity, and a release of heavy gases or vapours that spread along horizontal surfaces are given. As these characteristic lines have the low limit threshold, it is difficult to estimate the hazardous area distance when the value of release characteristic is under the low limit threshold. And KS C IEC 60079-10-1(2015) standard shows the concept for a zone of Negligible extent(NE) which can be considered as non hazardous area, but it is also difficult to apply the concept of a Negligible extent. The purpose of this paper is to suggest the guideline for the release characteristic to decide a hazardous area distance and the Negligible extent(NE) being considered as non-hazardous area when deciding a hazardous area distances by the KS C IEC 60079-10-1 standard.

Optimization of Fugitive Dust Control System for Meteorological Conditions (기상조건별 비산먼지 관리체계 최적화 연구)

  • Kim Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.573-583
    • /
    • 2005
  • Fugitive dust, which is emitted in the ambient air without first passing through a stack or duct designed to control flow, is frequently generated by means of wind erosion from storage yards at Pohang Steel Wokrs. The size distribution of fugitive dust is mostly in the range of coarse particulate which is deposited as soon as emitted and less harm to human health; however $20\%$ of fugitive dust contains PM 10 known as one of most harmful airborne pollutant. Consequently, effective control and reduction of fugitive dust is strongly requested by the local society, but it is not easy so far because the generation and dispersion of fugitive dust highly depends on meteorological conditions, and it being occurred for irregularity. This research presented a fugitive dust control system for each meteorological condition by providing statistical prediction data obtained from a statistical analysis on the probability of generating the threshold velocity at which the fugitive dust begins to occur, and the frequency occurring by season and by time of the wind direction that can generate atmospheric pollution when the dispersed dust spreads to adjacent residential areas. The research also built a fugitive dust detection system which monitors the weather conditions surrounding storage yards and the changes in air quality on a real-time basis and issues a warning message by identifying a situation where the fugitive dust disperses outside the site boundary line so that appropriate measures can be taken on a timely basis. Furthermore, in respect to the spraying of water to prevent the generation of fugitive dust from the storage piles at the storage yard, an advanced statistical meteorological analysis on the weather conditions in Pohang area and a case study of fugitive dust dispersion toward outside of working field during $2002\∼2003$ were carried out in order to decide an optimal water-spraying time and the number of spraying that can prevent the origin of fugitive dust emission. The results of this research are expected to create extremely significant effects in improving surrounding environment through actual reduction of the fugitive dust produced from the storage yard of Pohang Steel Works by providing a high-tech warning system capable of constantly monitoring the leakage of fugitive dust and water-spray guidance that can maximize the water-spraying effects.