• Title/Summary/Keyword: threshold values

Search Result 977, Processing Time 0.026 seconds

Unsupervised Change Detection Using Iterative Mixture Density Estimation and Thresholding

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.402-404
    • /
    • 2003
  • We present two methods for the automatic selection of the threshold values in unsupervised change detection. Both methods consist of the same two procedures: 1) to determine the parameters of Gaussian mixtures from a difference image or ratio image, 2) to determine threshold values using the Bayesian rule for minimum error. In the first method, the Expectation-Maximization algorithm is applied for estimating the parameters of the Gaussian mixtures. The second method is based on the iterative thresholding that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here are illustrated by an experiment on the multi-temporal KOMPAT-1 EOC images.

  • PDF

Derivation of Threshold Values for Groundwater in Romania, in order to Distinguish Point & Diffuse Pollution from Natural Background Levels

  • Radu, E.;Balaet, Ruxandra;Vliegenthart, F.;Schipper, P.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.85-91
    • /
    • 2010
  • Romania aims to adopt and implement the European Union's legislation, also including that for the field of water management. Like other countries, groundwater in Romania is locally polluted from point sources, such as leaking landfills, as well as from diffuse pollution sources, include fertilizers, pesticides and leakages from sewers, in urbanized areas. Diffuse pollution can also occur indirectly, by over-exploitation of groundwater wells, resulting in salt water intrusion, as well as from mining and exploitation of mineral aggregates. Romania has quite an intensive monitoring scheme to measure groundwater quality in phreatic and confined aquifers. The purpose of the work resumed in this paper was to derive natural background levels (NBL) for groundwater in order to distinguish the natural elevated concentrations of some substances (natural phenomena) from point and diffuse pollution (anthropogenic phenomena). Based on these NBLs, threshold values (TV) for groundwater will be set according to the requirements of the European Water Framework Directive and the related Groundwater Directive. This paper describes the results of a study for the derivation of NBL and TV in a pilot Groundwater Body. Also, the process and draft results for extrapolating this work for all Romanian groundwater bodies is explained, as well as points for future consideration with respect to monitoring and management.

Non-chemical Risk Assessment for Lifting and Low Back Pain Based on Bayesian Threshold Models

  • Pandalai, Sudha P.;Wheeler, Matthew W.;Lu, Ming-Lun
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Background: Self-reported low back pain (LBP) has been evaluated in relation to material handling lifting tasks, but little research has focused on relating quantifiable stressors to LBP at the individual level. The National Institute for Occupational Safety and Health (NIOSH) Composite Lifting Index (CLI) has been used to quantify stressors for lifting tasks. A chemical exposure can be readily used as an exposure metric or stressor for chemical risk assessment (RA). Defining and quantifying lifting nonchemical stressors and related adverse responses is more difficult. Stressor-response models appropriate for CLI and LBP associations do not easily fit in common chemical RA modeling techniques (e.g., Benchmark Dose methods), so different approaches were tried. Methods: This work used prospective data from 138 manufacturing workers to consider the linkage of the occupational stressor of material lifting to LBP. The final model used a Bayesian random threshold approach to estimate the probability of an increase in LBP as a threshold step function. Results: Using maximal and mean CLI values, a significant increase in the probability of LBP for values above 1.5 was found. Conclusion: A risk of LBP associated with CLI values > 1.5 existed in this worker population. The relevance for other populations requires further study.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

A study on the provide of CMR substances information for Threshold Limit Values (TLVs) chemicals in KMoEL (노출기준 설정 화학물질의 CMR물질 정보 제공에 관한 연구)

  • Lee, Kwon Seob;Lee, Hye Jin;Lee, Jong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Objectives: This study was performed to provide workplaces with political guidelines that apply international CMRs (Carcinogens, Mutagens, Reproductive toxins) information to Public Notice of TLVs (Threshold Limit Values). We analyzed information supply status about CMRs of international agencies and compared substances for which TLVs are set in KMoEL (Ministry of Employment and Labor in Korea). Methods: We referred to the reliable literature about classification criteria of CMRs corresponding to UN GHS (Globally Harmonized System of classification and Labeling of chemicals) and Public Notice No. 2009-68 'Standard for Classification, Labeling of Chemical Substance and Material Safety Data Sheet' in KMoEL. The classification system of CMRs in professional organizations (IARC, NTP, ACGIH, EU ECHA, KMoEL, etc.) was investigated through the internet and literature. Conclusions: 191 chemical substances among total 650 substances with TLVs are classified as carcinogens. Also, 43 substances classified as mutagens, and 44 as reproductive toxicants. These results suggest that the information of CMRs in Public Notice of TLV will be reorganized to 191 carcinogens, 43 mutagens, and 44 reproductive toxicants.

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

Medical Image Enhancement Using an Adaptive Weight and Threshold Values (적응적 가중치와 문턱치를 이용한 의료영상의 화질 향상)

  • Kim, Seung-Jong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.205-211
    • /
    • 2012
  • By using an adaptive threshold and weight based on the wavelet transform and Haar transform, a novel image enhancement algorithm is proposed. First, a medical image was decomposed with wavelet transform and all high-frequency sub-images were decomposed with Haar transform. Secondly, noise in the frequency domain was reduced by the proposed soft-threshold method. Thirdly, high-frequency coefficients were enhanced by the proposed weight values in different sub-images. Then, the enhanced image was obtained through the inverse Haar transform and wavelet transform. But the pixel range of the enhanced image is narrower than a normal image. Lastly, the image's histogram was stretched by nonlinear histogram equalization. Experiments showed that the proposed method can be not only enhance an image's details but can also preserve its edge features effectively.

Estimating Illumination Distribution to Generate Realistic Shadows in Augmented Reality

  • Eem, Changkyoung;Kim, Iksu;Jung, Yeongseok;Hong, Hyunki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2289-2301
    • /
    • 2015
  • Mobile devices are becoming powerful enough to realize augmented reality (AR) application. This paper introduces two AR methods to estimate an environmental illumination distribution of a scene. In the first method, we extract the lighting direction and intensity from input images captured with a front-side camera of a mobile device, using its orientation sensor. The second method extracts shadow regions cast by three dimensional (3D) AR marker of known shape and size. Because previous methods examine per pixel shadow intensity, their performances are much affected by the number of sampling points, positions, and threshold values. By using a simple binary operation between the previously clustered shadow regions and the threshold real shadow regions, we can compute efficiently their relative area proportions according to threshold values. This area-based method can overcome point sampling problem and threshold value selection. Experiment results demonstrate that the proposed methods generate natural image with multiple smooth shadows in real-time.

Experimental Evaluation of Fatigue Threshold for SA-508 Reactor Vessel Steel (SA-508 압력용기용 강에 대한 피로균열성장 하한계 조건의 실험 평가)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.160-167
    • /
    • 2012
  • This paper is concerned with a particular fracture mechanics parameter ${\Delta}K_{th}$, known as the 'threshold stress intensity range', or 'fatigue threshold'. This threshold ${\Delta}K_{th}$ constitutes, as it were, a hinge between the notion of crack initiation and the notion of crack growth. It has often been thought that, like the endurance limit, it could be an intrinsic criterion of the material. The study was conducted on a SA-508 pressure vessel steel used in the nuclear power industry. This material exhibits a typical threshold effect in the range of the crack growth rates which were determined; that is, below approximately $da/dN=10^{-6}mm/cycle$, the slope of the da./dN versus ${\Delta}K$ curve is almost vertical. The value of ${\Delta}K_{th}$ was determined at a growth rate of $10^{-7}$ mm/cycle according to the ASTM Standard for threshold testing. The fatigue threshold values are in the range 21 $kg/mm^{3/2}$ to 12 $kg/mm^{3/2}$ depending on the stress ratio effect.

A STUDY ON ORAL SENSORY FUNCTION IN THE IMPLANT-SUPPORTED PROSTHESES WEARERS (치과 임플랜트 보철 장착자의 구강 감각 기능에 관한 연구)

  • Jang, Kyoung-Soo;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.215-232
    • /
    • 1991
  • In this study, oral sensory function in the osseointegrated root form implant-supported prostheses wearers was estimated by measuring occlusal tactile perception threshold of thickness and sensibility threshold against lateral static loading, and comparing with normal dentition subjects and complete denture wearers group. Osseointegrated root form implants seemed to be restored in the sensation to some extent, and so, dental implants restored edentulous patients in a wide meaning. Conclusions were summarized as following. 1. Occlusal tactile perception threshold of thickness was highest in complete denture wearers group, following by implant-supported prostheses wearers group, normal dentition subjects group. 2. In the implant-supported prostheses wearers group, occlusal tactile perception threshold of opposing artificial teeth case was higher than of opposing natural or opposing implantsupported teeth case. 3. Sensibility threshold against lateral loading of complete denture wearers and implantsupported prostheses wearers group was higher than that of normal dentition subject group. 4. In the implant-supported prostheses group, sensibility threshold against lateral loading was not significantly different between upper and lower jaws. 5. In occlusal tactile perception threshold of thickness and sensibility threshold against lateral loading test, there was no regularity among values of each tooth, and no significant difference between anterior and posterior teeth as well.

  • PDF