무선 네트워크에서 토폴로지의 빈번한 변화로 노드 간 링크 단절과 경로재설정이 발생하여 네트워크 내에 제어메시지 과부하와 같은 문제점들이 발생한다. 본 연구에서는 링크 단절과 제어 메시지 과부하와 같은 문제점을 해결하기 위하여 무선 네트워크 환경에서 주변 노드 탐색과정, 경로 탐색과정, 경로 관리과정의 3단계로 경로 설정을 수행하고 경로 관리 과정에서 존 마스터가 수집한 라우팅 테이블의 정보를 이용하여 링크 안정성 값을 산출한다. 그리고 산출 된 링크 값을 존 마스터가 모니터링 하여 임계 값 이하로 되면 링크 단절로 예측하고 해당 송수신 노드에게 경로 재설정을 수행하게 된다. 제안한 기법은 이동 노드 수 변화에 따른 데이터 처리량, 평균 경로 설정 시간 및 이동 노드의 속도 변화에 따른 데이터 처리량에서 기존의 OLSR 프로토콜보다 성능 향상을 나타내었다.
The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.
본 논문에서는 기존 파티클 스웜 최적화를 기반으로 추적 대상 객체의 이동 궤적을 이용하는 객체 추적기에서 시간 정보 활용의 문제점을 개선한 강인한 객체 추적 알고리즘을 제안한다. 제안하는 알고리즘은 추적 대상 객체와 유사한 특징을 가지는 변위들의 집합에 대한 위치들의 온라인 업데이트와 추적을 가능하게 한다. 객체들의 중첩을 검출하고 추적 대상의 위치를 결정하기 위해 궤적 정보와 변위들의 집합을 기반으로 적응적 파라미터를 사용하는 규칙기반 접근을 사용한다. 기존 알고리즘들과 비교해보면 제안하는 접근법은 가용한 정보를 복합적으로 사용함으로써 각종 임계값에 대한 적응적 조정을 가능하게 한다. 또한, 파티클 스웜 최적화에서 발산에 의한 손실과 불완전한 수렴의 문제를 해결하기 위해 효율적인 가중치 조절 함수를 제안하고 있다. 제안하는 가중치 조절 함수는 파티클들이 최적의 해에 수렴하기 이전에 전체 프레임 영역에서 탐색할 수 있도록 한다. 유사한 특징 조합을 가지는 다중 객체가 존재하는 환경에서 제안 알고리즘을 테스트한 결과, 기존 스웜 최적화 기반의 객체 추적기들에 비해 기존 유사 변위들에 대한 잘못된 추적을 현저히 줄이는 것을 확인할 수 있었다.
본 논문에서는 포아송 방정식을 기반으로 하는 영상 합성에 있어서 합성된 영상의 자연성을 향상시키기 위한 효율적인 동영상 혼합 블랜딩 기법을 제안한다. 영상 블랜딩 과정에서는 영상 합성의 목적에 따라 포아송 블랜딩과 알파 브랜딩 등 다양한 방법이 사용되고 있다. 본 논문에서 제안하는 혼합 블랜딩 방식은 포아송 블랜딩과 알파 블랜딩의 장점들을 조합함으로써 합성 영상에서 이음매가 없고 또한 객체의 색상 왜곡이 감소되는 특징을 갖는다. 먼저 소스 영상의 객체를 포아송 블랜딩 방법으로 합성한 후, 블랜딩 된 객체와 원래의 객체의 색차를 비교한다. 그리고 색차값이 임계값 이상인 경우, 소스 영상의 객체에 대해 알파 블랜딩을 수행하고 이를 포아송 블랜딩 된 객체와 가중치를 부여하여 합산한다. 모의실험과 분석을 통해 제안된 방법이 포아송 블랜딩과 알파 블랜딩에 비해 합성 영역의 자연성이 우수할 뿐 아니라 요구되는 계산량도 비교적 적다는 것을 볼 수 있다.
Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.
자동차의 번호판은 차량의 등록 정보를 확인할 수 있는 유일한 방법이다. 불법 주정차 단속 및 주차 관리 시스템에 차량의 등록 정보를 확인하기 위해 카메라를 이용한 무인 인식시스템의 개발이 활발히 연구되고 있다. 하지만, 일반 도로상에서 날씨나 주변 장애물들은 자동차 번호판 상에 조명 변화를 일으켜 번호판 문자의 추출을 어렵게 한다. 본 논문은 번호판 영상을 개선하여 조명변화에 강인한 문자 추출 알고리즘을 제안한다. 제안하는 기법은 번호판 영상의 명암 대비도를 높이기 위해 Chi-Square 확률 밀도 함수를 이용한다. 또한, 정확한 문자영역을 추출하기 위해, 적응적인 문턱값을 적용함으로써 고품질의 이진화 영상을 얻는다. 번호판의 문자들을 추출하는 일련의 과정에서 방해가 되는 잡음들을 전처리와 레이블링을 통해 제거한다. 마지막으로 번호판의 문자들은 번호판의 기하학적 특징을 이용한 이진화 영상의 프로파일링으로부터 추출된다.
음성검출기는 이동 통신이나 음성신호처리 등에 매우 중요한 기법으로 사용된다. 일반적인 음성검출방식은 통계적인 모델을 기반으로 하여 likelihood ratio test (LRT)를 하게 된다. 그리고 이 값을 임계값과 비교하여 음성인지 아닌지 판단하게 된다. 본 논문에서는 가우시안 (Gaussian) 분포를 기반으로 하고 uniformly most powerful (UMP) 테스트를 이용하여 새로운 음성검출기법을 제안한다. 새로운 음성검출기법의 결정규칙은 기존 LRT에 기반하여 UMP 테스트를 통해 식을 유도하였다. UMP 테스트를 이용하면, 입력음성에 대한 절대값의 확률 분포를 Rayleigh 분포 형태로 얻을 수 있으며, 이 분포에 따라 최종적으로 음성검출을 하게 된다. 이 새로운 방식의 음성검출기는 기존의 방식에서 필요한 a priori signal-to-noise ratio (SNR) 값을 구하지 않고도 음성 유무를 판단할 수 있다는 장점이 있다. 실제로 다양한 음성검출에 대한 성능 평가결과, 제안된 기법이 기존 방식에 비해 우수한 성능을 나타내었다.
본 논문에서는 증식형 MOS 트랜지스터와 저항만을 사용하여 기준전압을 발생하기 위한 두 가지 방법을 제안하였다. 첫 번째 방법은 문턱전압에 비례하는 전압성분과 열전압에 비례하는 전압성분을 합하여 온도보상을 하는 전압모드 방식이고, 두 번째는 문턱전압에 비례하는 전류성분과 열전압에 비례하는 전류성분을 합하여 온도보상을 하는 전류모드 방식이다. 설계된 회로들을 $0.65{\mu}m$ n-well CMOS 공정 페러미터를 사용하여 HSPICE 모의실험한 결과, 전압모드 회로의 경우 공급전압에 대한 변화율은 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.21%/V 이하이고, 온도에 대한 변화율은 $3V{\sim}12V$의 공급전압 범위에서 $48.0ppm/^{\circ}C$ 이하이다. 전류모드 회로의 경우는 공급전압에 대한 변화율이 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.08%/V 이하이고, 온도에 대한 변화율은 $4V{\sim}12V$의 공급전압 범위에서 $38.2ppm/^{\circ}C$ 이하이다. 또한 전력소모는 5V, $30^{\circ}C$일 때 전압모드 경우와 전류모드 경우 각각 $27{\mu}W$와 $65{\mu}W$로 저전력 특성을 보인다. 제작된 전압모드 기준전압 발생회로를 측정한 결과, 공급전압에 대한 변화율은 $30^{\circ}C{\sim}100^{\circ}C$의 온도범위에서 0.63%/V 이하이고, 온도에 대한 변화율은 $3.0{\sim}6.0V$의 공급전압 범위에서 $490ppm/^{\circ}C$ 보다 작다. 제안된 회로들은 구조가 간단하기 때문에 설계가 용이하고, 특히 전류모드의 경우 넓은 범위의 기준전압 발생이 가능하다는 장점을 갖는다.
최근 부호화기의 성능 및 전력이 제한된 환경을 위한 비디오 부호화 기술로 분산 비디오 부호화 기술 (DVC : Distributed Video Coding)이 각광받고 있으며, Wyner-Ziv (WZ) 부호화 기술은 이의 대표적인 기술이다. WZ 부호화기는 기존 인트라 부호화 기술과 채널 부호를 사용하여 각각 키 (key)프레임과 WZ 프레임을 독립적으로 부호화한다. WZ 복호화기는 프레임 간 시간적 유사도를 기반으로, 복호화 된 키 프레임으로부터 보조 정보 (Side Information)를 생성한다. 보조 정보는 가상의 채널 잡음이 존재하는 WZ 프레임으로 간주되고, 가상의 채널 잡음은 채널 부호 복호화 과정을 통해 제거된다. 따라서 WZ 부호화 기술의 성능은 채널 부호의 성능에 크게 좌우된다. 현존하는 채널 부호 중 LPDC 채널 부호와 Turbo 채널 부호는 강력한 에러 정정 능력을 가지고 있으며, 확률적인 계산을 기반으로 반복적인 복호화 알고리즘을 수행하는 것이 특징이다. 하지만 반복적인 복호화 과정은 상당히 소모적인 과정으로 WZ 복호화기의 복잡도를 증가시킨다. 실제 WZ 부호화 기술에 LDPCA 채널 부호를 사용한 경우, WZ 복호화기 전체 복잡도에서 채널 복호화 과정이 차지하는 비율은 평균 60%에 이른다. 채널 복호화 과정 복잡도의 감소를 위해 채널 부호 분야에서 제안되었던 HDA (Hard Decision Aided) 방법을 LDPCA 채널 부호에 적용할 경우, 채널 복호화 과정의 복잡도는 상당히 줄어든다. 하지만 HDA 방법 적용을 위해 설정할 경계치에 따라 율 왜곡 측면에서 상당한 성능 저하가 있을 수 있으며. 적정 경계치는 영상마다 각각 다르다. 이에 본 논문에서는 영상의 특성에 따라 경계치가 설정되는 적응적 HDA 방법을 제안한다. 제안 방법은 적정 율 왜곡 성능을 유지하며, 채널 복호화 과정 및 WZ 복호화 과정에서 각각 약 62%, 32%의 시간 절감 성능을 보인다.
ATM망에서 트래픽 흐름을 제어하고 망 자원 사용을 효율적으로 사용하기 위해서는 폭주(Congestion)발생에 의한 망 성능 저하를 막고 폭주현상에 대처할 수 있는 적응적인 제어가 필요하다. 본 논문에서는 모든 트래픽에 대해 고정된 형태의 제어를 하는 Buffered Leaky Bucket과 적응성과 예측 기능을 갖는 신경회로망(Neural Network)을 이용하여 버퍼의 효율성을 높이고 망의 서비스 품질(QoS)로 구별되는 셀 손실율과 버퍼 지연을 테스트 및 성능 비교를 하였다. 또한 입력 트래픽의 다중화를 위해 사용되는 DWRR과 DWEDF의 셀 스케쥴링 알고리즘이 균등 지연을 만족할 수 있도록 개선하였다. 셀 스케쥴러로부터 망의 폭주 정보는 신경회로망을 이용한 Leaky Bucket에서 예측된 트래픽 손실율을 제어하고 손실율 정도에 따라 토큰 발생율과 버퍼 한계값은 제어된다. 이러한 트래픽 손실율 예측은 다음 입력 트래픽에 대한 손실과 버퍼지연을 줄일 수 있도록 제어의 효율성을 높일 수 있으며 다른 제어방식에도 응용될 수 있다. ATM 트래픽에 대한 신경회로망 학습과 예측 테스트를 위해 확률 랜덤 변수에 의해 발생된 셀 발생과 예측을 모의 실험하였으며, 이때 다양한 트래픽의 QoS가 향상되었음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.