Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.008

Enhancing the performance of a long-life modified CANDLE fast reactor by using an enriched 208Pb as coolant  

Widiawati, Nina (Department of Physics, Institut Teknologi Bandung)
Su'ud, Zaki (Department of Physics, Institut Teknologi Bandung)
Irwanto, Dwi (Department of Physics, Institut Teknologi Bandung)
Permana, Sidik (Department of Physics, Institut Teknologi Bandung)
Takaki, Naoyuki (Department of Nuclear Safety Engineering, Tokyo City University)
Sekimoto, Hiroshi (Emeritus Professor, Tokyo Institute of Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.2, 2021 , pp. 423-429 More about this Journal
Abstract
The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.
Keywords
Enriched $^{208}Pb$ coolant; Modified CANDLE; Reactivity; Initial fuel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Sekimoto, A. Nagata, Prog. Nucl. Energy 50 (2008) 109-113.   DOI
2 M. Yan, H. Sekimoto, Prog. Nucl. Energy 50 (2008) 286-289.   DOI
3 Z. Suud, H. Sekimoto, Advanced Materials Research, 2014.
4 J. Zhang, Adv. Eng. Mater. 16 (2014) 349-356.   DOI
5 Y. Lu, R. Zhu, Q. Fu, X. Wang, C. An, J. Chen, Nuclear Eng. Technol. 51 (2019) 546-555.   DOI
6 B. Feng, E. Shwageraus, B. Forget, M.S. Kazimi, Prog. Nucl. Energy 53 (2011) 862-866.   DOI
7 S. Permana, G. Saputra, M. Suzuki, Z. Suud, M. Saito, Int. J. Hydrogen Energy 41 (2016) 7076-7081.   DOI
8 K. Okumura, T. Kugo, K. Kaneko, K. Tsuchihachi, SRAC2006, A Comprehensive Neutronics Calculation Code System, 2007.
9 P. Hejzlar, R. Petroski, J. Cheatham, N. Touran, M. Cohen, B. Truong, R. Latta, M. Werner, T. Burke, J. Tandy, M. Garrett, B. Johnson, T. Ellis, J. Mcwhirter, A. Odedra, P. Schweiger, D. Adkisson, J. Gilleland, Nuclear Eng. fTechnol. 45 (2013) 731-744.   DOI
10 Z. Su'ud, H. Sekimoto, Ann. Nucl. Energy 54 (2013) 58-66.   DOI
11 H. Sekimoto, K. Ryu, Y. Yoshimura, Nucl. Sci. Eng. 139 (2001) 306-317.   DOI
12 H. Sekimoto, Prog. Nucl. Energy 47 (2005) 91-98.   DOI
13 Z. Su'ud, H. Sekimoto, Int. J. Nucl. Energy Sci. Technol. 5 (4) (2010) 347-368, https://doi.org/10.1504/IJNEST.2010.035544.   DOI
14 Z. Su'ud, F.H. Irka, T. Imam, H. Sekimoto, P. Sidik, Advanced Materials Research, 2013.
15 J. Gilleland, R. Petroski, K. Weaver, Engineering 2 (2016) 88-96.   DOI
16 N. Takaki, H. Sekimoto, Prog. Nucl. Energy 50 (2008) 114-118.   DOI
17 H. Sekimoto, S. Miyashita, Energy Convers. Manag. 47 (2006) 2772-2780.   DOI
18 H. Sekimoto, M. Yan, Energy Convers. Manag. 49 (2008) 1868-1872.   DOI
19 T. Okawa, H. Sekimoto, Ann. Nucl. Energy 37 (2010) 1620-1625.   DOI
20 E. Adamov, V. Orlov, A. Filin, V. Leonov, A. Sila-Novitski, V. Smirnov, V. Tsikunov, Nucl. Eng. Des. 173 (1997) 143-150.   DOI
21 E.P. Loewen, A.T. Tokuhiro, J. Nucl. Sci. Technol. 40 (2003) 614-627.   DOI
22 G.L. Khorasanov, V.V. Korobeynikov, A.P. Ivanov, A.I. Blokhin, Nucl. Eng. Des. 239 (2009) 1703-1707.   DOI
23 N. Widiawati, Z. Suud, D. Irwanto, H. Sekimoto, J. Phys.: Conf. Ser. 1090 (2018), 012071.   DOI
24 A.N. Shmelev, G.G. Kulikov, V.A. Apse, E.G. Kulikov, V.V. Artisyuk, Sci. Technol. Nuclear Instal. 2011 (2011) 1-12.
25 K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48 (2011) 1-30.   DOI
26 OECD/NEA Nuclear Science Committee, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies, 2015.
27 T. Okawa, H. Sekimoto, Prog. Nucl. Energy 53 (2011) 886-890.   DOI