• 제목/요약/키워드: three-surface aircraft

검색결과 66건 처리시간 0.028초

다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화 (Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes)

  • 김명규;구남서;서형석
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.211-216
    • /
    • 2023
  • 선박, 항공기 구조물을 설계할 때 경량화 및 강도를 만족할 수 있도록 설계하는 것은 중요하다. 현재, 경량화와 구조물의 강도를 만족시키기 위한 방법으로 3D 프린트 복합재료를 이용한 위상 최적화에 관련된 연구가 활발히 이루어지고 있다. 본 연구에서는 항공기 또는 무인기의 부품 중 하나인 조종면에 대한 3D 프린트 복합재료의 적용 가능성을 분석하기 위해 구조해석을 수행했다. 조종면의 내부 위상 형상에 대해 3가지(육각형, 사각형, 삼각형) 형상을 고려하여 굽힘 하중에 대한 조종면의 최적의 위상 형상을 분석하였다. 또한 3D 프린트 복합재료의 4가지 강화재(탄소섬유, 유리섬유, 고강내열유리섬유, 케블라)를 적용했을 때의 조종면의 굽힘 강도를 분석하였다. 3점 굽힘 실험결과와 구조해석 결과를 비교한 결과, 탄소섬유와 케블라로 제작된 육각형의 위상 형상을 갖는 조종면이 우수한 성능을 갖는 것을 확인하였다. 이를 통해 조종면에 대해 3D 프린트 복합재를 충분히 적용 가능할 것으로 판단된다.

종관 관측 자료 변화에 따른 예보 성능 분석 (Analysis of Forecast Performance by Altered Conventional Observation Set)

  • 한현준;권인혁;강전호;전형욱;이시혜;임수정;김태훈
    • 대기
    • /
    • 제29권1호
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.

대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구 (A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts)

  • 박철순;배성문
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

덕티드-프롭 유동해석 (FLOW SIMULATION AROUND DUCTED-PROP)

  • 최성욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.264-271
    • /
    • 2007
  • The flow simulations around ducted-prop of tilt-duct aircraft were conducted in this study. For the investigation of aerodynamic characteristics of various configurations of duct, the axisymmetric flow calculation method combined with actuator disk model for prop were used. The rapid two-dimensional calculation and fast grid generation enable aerodynamic analysis for various duct configurations in a very short time and anticipated to active role in optimal configuration design of duct exposed to various flight modes. For the case of angle of attack or tilt angle, the three dimensional flow calculation is conducted using the three dimensional grid simply generated by just revolving the axisymmetric grid around center axis. Through the three dimensional calculation around duct, the aerodynamic effectiveness of duct as a lifting surface in airplane mode was investigated. The flow calculations around the control vane (wing) installed in the rear section of duct were conducted The aerodynamic data of wing were compared with the data of the ducts to evaluate the aerodynamic effectiveness of ducts.

  • PDF

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

타원체의 역방향 산란 해석 (High-Frequency Analysis of Electromagnetic Backscattering from an Ellipsoid)

  • 심재륜
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.685-688
    • /
    • 2005
  • 대표적인 이중곡면 산란체인 타원체를 표준 구조물로 설정하여 역방향(backscattering)에서의 고주파 전자파 산란 해석을 위한 creeping wave을 구하는 방법에 대해 알아보았다. 타원체는 비행기나 미사일 형태의 몸체를 모델링하는 기본 구조물이다. 시뮬레이션으로 타원체 표면에서의 geodesic path의 결과를 제시하였다.

  • PDF

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구 (Structural Optimization of Additive/Subtractive Hybrid Machines)

  • 박준구;김은중;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

3차원 균열을 갖는 구조물에 대한 건전성 평가(II) (Integrity Evaluation for 3D Cracked Structures(II))

  • 이준성
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2013
  • 3차원 균열은 항공기나 압력용기 계통에서 흔히 발견되는 결함중의 하나이다. 균열을 갖는 구조물에 대한 정확한 응력확대계수 해석과 균열성장속도는 파괴강도와 피로수명을 평가하는데 필요로 한다. 3차원 유한요소법은 구조물에 존재하는 표면균열의 응력확대계수를 구하는데 이용되어 진다. 기하모델, 즉 균열을 포함하는 솔리드모델을 정의한 후, 절점이 버켓법에 의해 생성되어 진다. 요소생성은 사변형 솔리드요소를 데라우니 삼각화 기술에 의해 생성하도록 하였다. 시스템의 정확도와 효용성을 체크하기 위해 내압을 받는 원통형용기에 균열이 존재하는 경우의 응력확대계수 해석을 수행하였다. 개발된 시스템을 이용한 해석결과는 ASME 식과 Raju-Newnam식과 비교하여 5%이내의 차이를 보였다.

스마트무인기 축소모형의 조종면 혼합기 설계 (Design of Control Mixer for 40% Scaled Smart UAV)

  • 강영신;박범진;유창선
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.240-247
    • /
    • 2006
  • 틸트로터 항공기는 회전익모드, 천이모드, 고정익모드를 동시에 갖는 복합 형상 항공기 이다. 각 비행모드에서 최적의 상태로 비행하기위해서는 조종면 변위를 적절히 분배하고 조합하는 조종면의 혼합기설계가 요구된다. 회전익과 고정익을 전환할 수 있도록 설계돤 천이모드는 나셀각의 변경에 따른 추력선이 변경되고 이로 인해 천이모드에서 피치, 롤, 요축에 대해 불필요한 힘과 모멘트를 발생시킨다. 본 논문에서는 나셀의 틸팅각 변화에 따라 발생하는 힘과 모멘트를 다른 조종면을 통해 적절히 조절하여 일관된 항공기의 운동이 발생하도록 하는 스마트무인기 40% 축소모델에 대한 조종면 혼합기설계에 대해 서술하였다.

  • PDF