• Title/Summary/Keyword: three-species food chain systems

Search Result 4, Processing Time 0.019 seconds

Permanence of a Three-species Food Chain System with Impulsive Perturbations

  • Baek, Hunki;Lee, Hung-Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.503-514
    • /
    • 2008
  • We investigate a three-species food chain system with Lotka-Volterra functional response and impulsive perturbations. In [23], Zhang and Chen have studied the system. They have given conditions for extinction of lowest-level prey and top predator and considered the local stability of lower-level prey and top predator eradication periodic solution. However, they did not give a condition for permanence, which is one of important facts in population dynamics. In this paper, we establish the condition for permanence of the three-species food chain system with impulsive perturbations. In addition, we give some numerical examples.

Permanence of an impulsive food web system with Holling-type II functional responses

  • Baek, Hun-Ki;Park, Jun-Pyo;Do, Young-Hae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.211-217
    • /
    • 2009
  • In this paper, we are studying the property for permanence of a three species food chain system with impulsive perturbations and Holling type II functional response, species which is important concept or property in ecological systems. Specially, we give the conditions for the permanence of this system. To do it, we consider the comparison method which is typical skill happened in impulsive differential inequalities. In addition, we reaffirm our results by using a numerical example.

  • PDF

Metabolic engineering for biofortification of lipophilic antioxidants in plants (식물의 지용성 항산화 물질 생산 증대를 위한 대사공학 연구현황)

  • Kim, Eun-Ha;Lee, Kyeong-Ryeol;Kim, Jong-Bum;Roh, Kyung Hee;Kang, Han Chul;Kim, Hyun Uk
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.169-179
    • /
    • 2014
  • Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent oxidative damage to cellular component by scavenging free radicals and activated oxygen species. Hydrophobic scavengers are found in cell membrane where they interrupt chain reactions of lipid peroxidation. The three major lipophilic antioxidant classes for human health are carotenoids, vitamin E and coenzyme Q10. The biofortification of staple crops with these lipid soluble antioxidants is an attractive strategy to increase the nutritional quality of human food. Here, we have summarized the biosynthetic pathways of three lipid soluble antioxidants in plants and current status of genetic engineered plants for elevated levels of each lipophilic antioxidant.