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Abstract

In this paper, we are studying the property for permanence of a three species food
chain system with impulsive perturbations and Holling type II functional response,
species which is important concept or property in ecological systems. Specially, we
give the conditions for the permanence of this system. To do it, we consider the com-
parison method which is typical skill happened in impulsive differential inequalities. In
addition, we reaffirm our results by using a numerical example.

Keywords: A three-species food chain system, holling-type II functional response, im-
pulsive perturbations.

1. Introduction

Recently, researches on the impulsive prey-predator population systems and simple multi-
species systems consisting of a three-species food chain with impulsive control strategy have
been discussed in Baek (2008), Liu (2005, 2006), Wang (2007, 2008), and Zhang (2005, 2006a,
2006b). Holling (1965) gave three different kinds of functional response of the predator to the
prey, which referred to the change in the density of prey attacked per unit time per predator
as the prey density changed, to describe more realistic situations than standard Lotka-
Volterra system. According to Hassel et al (1969), the Holling type II functional response
is the most common type of functional response among arthropod predators. Thus, based
on the predator-prey system with Holling II and group defense, Zhang and et al (2005)
proposed an impulsive differential equation to model the process of periodically releasing
natural enemies as follows:
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

x′ (t) = rx (t)

(
1 −

x (t)
K

)
−

c1x (t) y (t)
e1 + x (t)

, t ̸= nT

y′ (t) = −d1y (t) +
c2x (t) y (t)
e1 + x (t)

−
c3y (t) z (t)
e2 + y (t)

, t ̸= nT ,

z′ (t) = −d2z (t) +
c4y (t) z (t)
e2 + y (t)

, t ̸= nT

△x (t+) = 0, t=nT
△y (t+) = 0, t=nT ,
△z (t+) = p, t=nT
(x (0+) , y (0+) , z (0+)) = (x0, y0, z0) .

(1.1)

where r is the intrinsic rate of increase, K is the capacity of the prey, c1 and c3 are the per-
capita rate of predation of the predators, ei (i = 1, 2) are the half-saturation constants, d1,
d2 denote the death rate of the mid-level predator and the top-level predator, respectively,
T is the period of the impulsive immigration or stock of the predator, and q is the size of
immigration or stock of the predator.

The authors in Zhang (2005b) studied the stability for the predator-free periodic solution
and prey-predator-free periodic solution of the system (1.1). They proved their local stability
and showed that the system (1.1) has complicated dynamical behaviors by using numerical
simulations.

The main purpose of this paper is to determine the conditions for the permanence of the
system (1.1).

2. Preliminaries

First, we shall introduce a few notations and definitions together with a few auxiliary
results relating to comparison theorem, which will be useful for our main results.

Let R+ = [0,∞) and R3
+ =

{
x = (x (t) , y (t) , z (t)) ∈ R3 : x (t) , y (t) , z (t) ≥ 0

}
. Denote

N the set of all nonnegative integers, R∗
+ = (0, ∞) and f = (f1, f2, f3)

T the right hand of
the first three equations in (1.1). Let V : R+ × R3

+ → R+ , then V is said to be in a class
V0 if

(1) V is continuous on (nT, (n + 1) T ] × R3
+ , and lim

(t, y) → (nT, x)
t > nT

V (t,y) = V (nT+,x)

exists.
(2) V is locally Lipschitzian in x.

Definition 2.1 For V ∈ V0, we define the upper right Dini derivative of V with respect to
the impulsive differential system (1.1) at (t,x) ∈ (nT, (n + 1) T ] × R3

+ by

D+V (t,x) = lim
h→0+

sup
1
h

[V (t + h,x + hf (t,x)) − V (t,x)]

Remark 2.1 (1) The solution of the system (1.1) is a piecewise continuous function
x : R+ → R3

+ , x (t) is continuous on (nT, (n + 1) T ] , n ∈ N and x (nT+) = limt→nT+ x (t)
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exists. (2) The smoothness properties of f guarantee the global existence and uniqueness of
solution of the system (1.1). See Bainov (1993) and Lakshmikantha (1989) for the details.

We will use a comparison result of impulsive differential inequalities. We suppose that
g : R+ × R+ → R satisfies the following hypotheses:

(H) g is continuous on (nT, (n + 1) T ] × R+ and the limit lim(t,y)→(nT+,x) g (t, y) = g (nT+, x)
exists and is finite for x ∈ R+ and n ∈ N .

According to Bainov (1993) and Lakshmikantha (1989), we obtain the followin Lemma.

Lemma 2.1 Suppose V ∈ V0 and{
D+V (t,x) ≤ g (t, V (t,x)) , t ̸= nT,

V (t,x (t+)) ≤ ψn (V (t,x)) , t = nT,
(2.1)

where g : R+ × R+ → R satisfies (H) and ψn : R+ → R+ are non-decreasing for all n ∈ N.
Let r (t) be the maximal solution for the impulsive Cauchy problem

u′ (t) = g (t, u (t)) , t ̸= nT,

u (t+) = ψn (u (t)) , t = nT,

u (0+) = u0,

(2.2)

defined on [0,∞). Then V (0+,x 0) ≤ u0 implies that V (t,x (t)) ≤ r (t) , t ≥ 0, where x (t)
is any solution of (2.1).

A similar result can be obtained when all conditions of the inequalities in the Lemma 2.3
are reversed.

Now, we give the basic properties of another impulsive differential equation as follows:
z′ (t) = −d2z (t) , t ̸= nT ,
z (t+) = z (t) + p, t = nT,

z (0+) = z0.

(2.3)

The system (2.3) is a periodically forced linear system. It is easy to obtain that

z∗ (t) =
p exp (−d2 (t − (n − 1) T ))

1 − exp (−d2T )
, (n − 1) T < t ≤ nT (2.4)

z∗ (0+) = z∗ (nT+) = p/(1 − exp(−d2T )) , is a positive periodic solution of (2.3). Moreover,
we can obtain that

z (t) =

(
z

(
0+

)
−

p

1 − exp (−d2T )

)
exp (−d2t) + z∗ (t) , (n − 1)T < t ≤ nT, (2.5)

is a solution of (2.3). From (2.4) and (2.5), we get easily the following result.
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Lemma 2.2 Let z (t) be any solution of equation (2.3). Then z (t) tends to the periodic
solution z∗ (t) . i.e., |z (t) − z∗ (t)| → 0 as t → ∞ .

Note that the logistic equation x′ (t) = rx (t) (1 − (x (t)/K)) have a globally asymptoti-
cally stable equilibrium x (t) = K and an unstable equilibrium x (t) = 0 . Thus, we obtain
the complete expression for the predator eradication periodic solution and the prey predator
eradication periodic solution of the system (1.1).

(0, 0, z∗ (t)) =

(
0, 0,

p exp (−d2 (t − (n − 1)T ))
1 − exp (−d2T )

)
, (n − 1) T < t ≤ nT.

(K, 0, z∗ (t)) =

(
K, 0,

p exp (−d2 (t − (n − 1) T ))
1 − exp (−d2T )

)
, (n − 1) T < t ≤ nT.

Now we mention the following useful results in Zhang(2005b) to prove our main Theorem.

Theorem 2.1 There is an M > 0 such that x (t) ≤ M , y (t) ≤ M and z (t) ≤ M for all
t large enough, where (x (t) , y (t) , z (t)) is a solution of the system (1.1).

3. Main theorem

First, we will remark the definition of the permanence before stating our main theorem.

Definition 3.1 The system (1.1) is said to be permanent if there exist M ≥ m > 0 such
that, for any solution (x (t) , y (t) , z (t)) of the system (1.1) with x0, y0, z0 > 0 , m ≤
limt→∞ ∞ x (t) ≤ limt→∞ sup x (t) ≤ M , m ≤ limt→∞ ∞ y (t) ≤ limt→∞ sup y (t) ≤ M
and m ≤ limt→∞ ∞ z (t) ≤ limt→∞ sup z (t) ≤ M .

We will use the following basic lemmas in Brauer (2001) to show the permanence of the
system (1.1).

Lemma 3.1 Consider the following competitive Lotka-Volterra predator-prey system:{
u′ (t) = ru (t) (1 − du (t)K) − αu (t) v (t) ,

v′ (t) = −dv (t) + βu (t) v (t) .
(3.1)

Then the system (3.1) has a unique positive equilibrium point (u∗, v∗) = ((d/β), (r/α)(1 −
u∗/K)) which is globally asymptotically stable if u∗ < K.

It follows from Liu (2003) that the following Lemma holds.

Lemma 3.2 Consider the following prey-dependent consumption system:
u′ (t) = ru (t)

(
1 −

u (t)
K

)
− αu (t) v (t) .

v′ (t) = −dv (t) +
βu (t) v (t)
γ + u (t)

.

(3.2)
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Then the system (3.1) has a unique positive equilibrium point (u∗, v∗) = (dγ/(β − d),
(r/α)(1 − u∗/K)) which is globally asymptotically stable if u∗ < K and β > d.

Theorem 3.1 The system (1.1) is permanent if 0 < Kc2 − d1e1 < (Kc1c2d2e2)/(rc4e1)
and

p < min

{
e2 (c2K − d1e1 − d1K) (1 − exp (ρT ))

c3 (e1 + K)
,
e2 (c2 − d1) (1 − exp (ρT ))

c3

}
, (3.3)

where ρ = (c4 e1r (Kc2 − d1e1) − Kc1c2d2e2)/(Kc1c2e2).

Proof : Let (x (t) , y (t) , z (t)) be the solution of the system (1.1) with a positive initial value
(x0, y0, z0) . By Theorem 2.1, the solution (x (t) , y (t) , z (t)) has an upperbound M > 0 .
Now, we will find a lowerbound m > 0 . To do this, consider the following system:

x′
1 (t) = rx1 (t)

(
1 −

x1 (t)
K

)
−

c1

e1
x1 (t) y1 (t) ,

y′
1 (t) = −d1y1 (t) +

c2

e1
x1 (t) y1 (t) ,

(x1 (0+) , y1 (0+)) = (x0, y0) .

(3.4)

From Lemma 2.1, we get x (t) ≥ x1 (t) and y (t) ≤ y1 (t) . By Lemma 3.2 and 0 < Kc2−d1e1,
we obtain (x∗

1, y∗
1) = (d1e1/c2, (e1r/c1)(1−(x∗

1/K))) is globally asymptotically stable. Thus
limt→∞ x1 (t) = x∗

1 and limt→∞ y1 (t) = y∗
1 . Since Kc2 − d1e1 < (Kc1c2d2e2)/(rc4e1), we

can choose a sufficiently small ϵ1 > 0 such that η ≡ −d2 + (c4/e2) (y∗
1 + ϵ1) < 0 . Further,

since limt→∞ x1 (t) = x∗
1 and limt→∞ y1 (t) = y∗

1 , there exists a T1 > 0 such that x (t) >
x∗

1 − ϵ1 ≡ m1 and y (t) < y∗
1 + ϵ1 for all t > T1 . For the simplicity, we may assume that

x (t) > x∗
1 − ϵ1 ≡ m1 and y (t) < y∗

1 + ϵ1 for all t > 0 . By the third equation of (1.1),
Lemmas 2.1 and 2.2, we have z (t) ≤ w (t) and |w (t) − w∗ (t)| → ∞ as t → ∞, where w (t)
is the solution of 

w′ (t) = ηw (t) , t ̸= nT,

△w (t) = p, t = nT,

w (0+) = z0

(3.5)

and w∗(t) = p exp(η(t − nT ))/(1 − exp(ηT )) , t ∈ ((n−1)T, nT ] (w∗(0+) = p/(1 − exp(ηT )))
is the periodic solution of (3.5). It is easy to see from the choice of ϵ1 that the periodic
solution w∗ (t) is asymptotically stable. Therefore, for ϵ2 > 0 , there exists a T2 > 0 such
that z (t) ≤ w (t) < w∗ (t) + ϵ2 < p/(1 − exp(ηT )) + ϵ2 ≡ σ for t > T2 . Without loss of
generality, we may suppose that z (t) ≤ σ for all t > 0 . From Lemma 2.1 and Theorem 2.1,
we have x2 (t) ≥ x (t) and y2 (t) ≤ y (t) , where (x2 (t) , y2 (t)) is a solution of the following
differential equation:

x′
2 (t) = rx2 (t)

(
1 −

x2 (t)
K

)
−

c1

e1 + M
x2 (t) y2 (t) ,

y′
2 (t) = −d1y2 (t) +

c2x2 (t) y2 (t)
e1 + x2 (t)

−
c3σ

e2
y2 (t) ,

(x2 (0+) , y2 (0+)) = (x0, y0) .

(3.6)
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It is inferred from Lemma 3.2 that the unique positive equilibrium point

(x∗
2, y∗

2) =

(
(d1e2 + c3σ) e1

e2 (c2 − d1) − c3σ
,
r (e1 + M)

c1

(
1 −

x∗
2

K

))

is globally asymptotically stable since the condition (3.3) holds. Thus, for ϵ3 > 0 , there
exists a T3 > 0 such that x (t) < x∗

2 + ϵ3 and y (t) < y∗
2 − ϵ3 ≡ m2 for all t > T3 . On

the other hand, from Lemma 2.1 and 2.2 we get z (t) ≥ w1 (t) and |w1 (t) − w∗
1 (t)| → ∞ as

t → ∞ , where w1 (t) and w∗
1 (t) are the solution and the periodic solution of the following

system, respectively. 
w′

1 (t) = −d2w1 (t) , t ̸= nT,

△w1 (t) = p, t = nT,

w1 (0+) = z0.

(3.7)

Thus z (t) ≥ w∗
1 (t)−ϵ3 > p exp (−d2T )/(1 − exp (−d2T ))−ϵ3 ≡ m3 for large enough t > 0 .

Let m = min {m1, m2, m3} . Then we have x (t) , y (t) , z (t) ≥ m > 0 for sufficiently large
t > 0 . This completes the proof. ¤

Example 3.1 To illustrate an numerical example related to Theorem 3.1, let γ =1.1, c1

=1.0, c2 =1.5, c3 =0.9, c4 =0.01, d1 =0.1, d2 =0.6, e1 =0.2, e2 =0.7, K =3.0, p =1 and
T =10. These parameters satisfy the conditions of Theorem 3.1. It implies that the system
(1.1) is permanent. Figure 3.1 shows this phenomenon.

Figure 3.1 The dynamical behavior of the system (1.1). Figs. (a)-(c) show that a tragjectory with a
starting point (x0, y0, z0) = (1, 1, 1) approaches to the periodic orbit (K, 0, z∗ (t)) , (d) displays the

phase portrait of the system (1.1).
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