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Abstract. We investigate a three-species food chain system with Lotka-Volterra func-

tional response and impulsive perturbations. In [23], Zhang and Chen have studied the

system. They have given conditions for extinction of lowest-level prey and top predator

and considered the local stability of lower-level prey and top predator eradication periodic

solution. However, they did not give a condition for permanence, which is one of important

facts in population dynamics. In this paper, we establish the condition for permanence

of the three-species food chain system with impulsive perturbations. In addition, we give

some numerical examples.

1. Introduction

The mathematical study of predator-prey system in population dynamics has a
long history starting with the work of Lotka and Volterra. The principles of Lotka-
Volterra models, conservation of mass and decomposition of the rates of change in
birth and death processes, have remained valid until today and many theoretical
ecologists adhere to there principles. For the reason, we need to consider a Lotka-
Volterra type food chain model, which can be described by the following differential
equations:

(1.1)





x′(t) = x(t)(a− bx(t)− cy(t)),
y′(t) = y(t)(−d1 + c1x(t)− e1z(t)),
z′(t) = z(t)(−d2 + e2y(t)),

where x(t), y(t), z(t) are the densities of the lowest-level prey, mid-level predator and
top predator at time t, respectively, a, b, c, d1, c1, e1, d2, e2 are positive constants.

On the other hand, there are number of factors in the environment to be con-
sidered in population models. One of important factors is impulsive perturbation
such as fire, flood, etc, that are not suitable to be considered continually. These
impulsive perturbations bring sudden changes to the system. For example, con-
sider the interaction between crops and locusts in a local region. Once a year or

Received May 2, 2008.
2000 Mathematics Subject Classification: 34A37, 34D23, 34H05, 92D25.
Key words and phrases: Lotka-Volterra three-species food chain systems, impulsive

differential equations, Floquet thoery, comparison theorem.

503



504 Hunki Baek and Hung Hwan Lee

once several years, a large number of locusts may invade into the region and cause
damage to the crops together with the local locusts. Another important example
is a biological control for pests (prey(x(t))). It is defined as the reduction of pest
population by natural enemies(mid-level predator(y(t))) and typically involves an
active human role. The key to successful pest control is to identify the pest and its
natural enemy and release the beneficial insect at fixed times for pest control. It is
natural to assume that these perturbations act instantaneously, that is, in the form
of impulse. Thus, in this paper, we consider the following Lotka-Volterra type food
chain model with periodic constant impulsive immigration of the middle predator.

(1.2)





x′(t) = x(t)(a− bx(t)− cy(t)),
y′(t) = y(t)(−d1 + c1x(t)− e1z(t)),
z′(t) = z(t)(−d2 + e2y(t)),

}
t 6= nT,

x(t+) = x(t),
y(t+) = y(t) + p,

z(t+) = z(t),

}
t = nT,

(x(0+), y(0+)) = (x0, y0) = x0,

where T is the period of the impulsive immigration or stock of the predator and
p is the size of immigration or stock of the predator. Such model is an impulsive
differential equation whose theory and applications were greatly developed by the
efforts of Bainov and Lakshmikantham et al. [2], [10] and, moreover, the theory of
impulsive differential equations is being recognized to be not only richer than the
corresponding theory of differential equations without impulses, but also represents
a more natural framework for mathematical modeling of real world phenomena.

In recent years, many authors have studied predator-prey models with impulsive
perturbations [11], [12], [13], [17], [18], [19], [25], [27]. Moreover, food chain models
with sudden perturbations have been intensively researched, such as Holling-type
[23], [24], Bedington-type [20], [21], [28], and Ivlev-type [22]. Especially, Zhang and
Chen [23] have studied the model (1.2). They have gave conditions for extinction
of lowest-level prey and top predator, considered the local stability of lower-level
prey and top predator eradication periodic solution. However, they did not give a
condition for permanence, which is one of important facts in population dynamics.
The main purpose of this paper is to investigate the permanence of (1.2).

The organization of the paper is as follows. In the next section, we introduce
some notations which are used in this paper. In section 3, we give a sufficient con-
dition for the permanence of the system (1.2) by applying the comparison theorem.
In section 4 we give some numerical examples. Finally, we have a conclusion in
section 4.

2. Preliminaries

The three species food chain model (1.1) has four non-negative equilibrium:
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(1) The system (1.1) has positive equilibrium: E∗ = (x∗, y∗, z∗) if and only if
ae2c1 − d2cc1 − d1be2 > 0, where

x∗ =
ae2 − d2c

be2
, y∗ =

d2

e2
, z∗ =

ae2c1 − d2cc1 − d1be2

be1e2
.

(2) The system (1.1) has three equilibrium :

A(0, 0, 0), B(
d1

b
, 0, 0), C(

d1

c1
,
ac1 − d1b

cc1
, 0), (ac1 − d1b > 0).

The stability of equilibrium of the system (1.1) can be established as follows:

Lemma 2.1([23]).

(1) If positive equilibrium E∗ exists, then E∗ is globally stable.

(2) If positive equilibrium E∗ dose not exist and C exists, then C is globally stable.

(3) If positive equilibrium E∗ and C do not exist, then B is globally stable.

Now, we shall introduce a few notations and definitions together with a few
auxiliary results relating to comparison theorem, which will be useful for our main
results.

Let R+ = [0,∞) and R3
+ = {x = (x(t), y(t), z(t)) ∈ R3 : x(t), y(t), z(t) ≥ 0}.

Denote N the set of all of nonnegative integers and f = (f1, f2, f3)T the right hand
of the first three equations in (1.2). Let V : R+ × R3

+ → R+, then V is said to be
in a class V0 if

(1) V is continuous on (nT, (n + 1)T ] × R3
+, and lim

(t,y)→(nT,x)
t>nT

V (t,x) =

V (nT+,x) exists.

(2) V is a locally Lipschitzian in x.

Definition 2.2. For V ∈ V0, we define the upper right Dini derivative of V with
respect to the impulsive differential system (1.2) at (t,x) ∈ (nT, (n + 1)T ]×R3

+ by

D+V (t,x) = lim sup
h→0+

1
h

[V (t + h,x + hf(t,x))− V (t,x)].

Remark 2.3.

(1) The solution of the system (1.2) is a piecewise continuous function x : R+ →
R3

+, x(t) is continuous on (nT, (n + 1)T ], n ∈ N and x(nT+) = lim
t→nT+

x(t)

exists.

(2) The smoothness properties of f guarantee the global existence and uniqueness
of solution of the system (1.2)(See [10] for the details).
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We will use an important comparison theorem on an impulsive differential equa-
tion [10]. We suppose that g : R+ × R+ → R satisfies the following hypotheses.

(H) g is continuous on (nτ, (n + 1)τ ] × R+ and the limit lim
(t,y)→(nτ+,x)

g(t, y) =

g(nτ+, x) exists and is finite for x ∈ R+ and n ∈ N.

Lemma 2.4([10]). Suppose V ∈ V0 and

(2.1)

{
D+V (t,x) ≤ g(t, V (t,x)), t 6= nτ

V (t,x(t+)) ≤ ψn(V (t,x)), t = nτ,

where g : R+ × R+ → R satisfies (H) and ψn : R+ → R+ is non-decreasing for all
n ∈ N. Let r(t) be the maximal solution for the impulsive Cauchy problem

(2.2)





u′(t) = g(t, u(t)), t 6= nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0,

defined on [0,∞). Then V (0+,x0) ≤ u0 implies that V (t,x(t)) ≤ r(t), t ≥ 0, where
x(t) is any solution of (2.1).

Similar result can be obtained when all conditions of the inequalities in the
Lemma 2.4 are reversed. Note that if we have some smoothness conditions of g(t, x)
to guarantee the existence and uniqueness of solutions for the Cauchy problem (2.2),
then r(t) is exactly the unique solution of (2.2).

The following lemma is obvious.

Lemma 2.5([23]). Let x(t) = (x(t), y(t), z(t)) be a solution of the system (1.2).
Then we have

(1) If x(0+) ≥ 0 then xx(t) ≥ 0 for all t ≥ 0 and

(2) If x(0+) > 0 then x(t) > 0 for all t ≥ 0.

Now, we give the basic properties of the following impulsive differential equation.

(2.3)





y′(t) = −d1y(t), t 6= nT

y(t+) = y(t) + p, t = nT,

y(0+) = y0.

Then we can easily obtain the following results.
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Lemma 2.6.

(1) y∗(t) =
p exp(−d1(t− nT ))

1− exp(−d1T )
, t ∈ (nT, (n + 1)T ], n ∈ N and y∗(0+) =

p

1− exp(−d1T )
is a positive periodic solution of (2.3).

(2) y(t) =
(
y(0+) − p

1− exp(−d1T )

)
exp(−d1t) + y∗(t) is the solution of (2.3)

with y0 ≥ 0, t ∈ (nT, (n + 1)T ] and n ∈ N.

(3) All non-negative solutions y(t) of (2.3) tend to y∗(t). i.e., |y(t)− y∗(t)| → 0
as t →∞.

It is from Lemma 2.6 that the general solution y(t) of (2.3) can be synchronized
with the positive periodic solution y∗(t) of (2.3) for sufficiently large t and we
can obtain the complete expression for the lowest-level prey and top predator free
periodic solution of the system (1.2)

(0, y∗(t), 0) =
(

0,
q exp(−d1(t− nT ))

1− exp(−d1T )
, 0

)
for t ∈ (nT, (n + 1)T ].

The stability of the periodic solution (0, y∗(t), 0) and the boundedness of the
system (1.2) has been studied in [23]. Now we will mention their results as follows:

Theorem 2.7([23]). Let (x(t), y(t), z(t)) be any solution of the system (1.2). Then

(0, y∗(t), 0) is locally asymptotically stable provided
ad1T

c
< p <

d1d2T

e2
.

Theorem 2.8([23]). There exists a constant M > 0 such that x(t) ≤ M , y(t) ≤ M
and z(t) ≤ M for each solution (x(t), y(t), z(t)) of the system (1.2) with all t large
enough.

For the system (1.2), there exist the following two subsystems. If the top-
predator is absent i.e., z(t) = 0, then the system (1.2) can be reduced

(2.4)





x′(t) = x(t)(a− bx(t)− cy(t)),
y′(t) = y(t)(−d1 + c1x(t)),

}
t 6= nT,

x(t+) = x(t),
y(t+) = y(t) + p.

}
t = nT,

If the prey is extinct, then the system (1.2) can be reduced

(2.5)





y′(t) = y(t)(−d1 − e1z(t)),
z′(t) = z(t)(−d2 + e2y(t)),

}
t 6= nT,

y(t+) = y(t) + p,

z(t+) = z(t).

}
t = nT,
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Definition 2.9. The system (1.2) is permanent if there exist M ≥ m > 0 such
that, for any solution (x(t), y(t), z(t)) of the system (1.2) with x(0+), y(0+) > 0,

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤ M , m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ M and

m ≤ lim
t→∞

inf z(t) ≤ lim
t→∞

sup z(t) ≤ M.

Especially, the reference [12] have given a condition for permanence of the subsystem
(2.4).

Theorem 2.10([12]). If p <
ad1T

c
, then the subsystem (2.4) is permanent.

3. Main results

Theorem 3.1. If p >
d1d2T

e2
, then the subsystem (2.5) is permanent.

Proof. Let (y(t), z(t)) be a solution of the subsystem (2.5) with y(0) > 0, z(0) > 0.

From Theorem 2.8, we may assume that y(t) ≤ M and z(t) ≤ M

e1
. Then y′(t) ≥

−(d1 + M)y(t). From Lemmas 2.4 and 2.6, we have y(t) ≥ u∗(t) − ε for ε > 0,

where u∗(t) =
p exp(−(d1 + M)(t− nT ))

1− exp(−(d1 + M))
for t ∈ (nT, (n + 1)T ]. Thus, we obtain

that y(t) ≥ p(exp(−(d1 + M)T )
1− exp(−(d1 + M))

− ε ≡ m0 for sufficiently large t. Therefore, we

only need to find m2 > 0 such that z(t) ≥ m2 for large enough t.

We will do this in the following two steps.

(Step1) Since p >
d1d2T

e2
, we can choose m1 > 0, ε1 > 0 small enough such that

R = exp(
e2p− d1d2T −m1e1d2T

d1 + e1m1
− e2ε1) > 1. In this step we will show that

z(t1) ≥ m1 for some t1 > 0. Suppose not. i.e., there exists t1 > 0 such that
z(t) < m1 for t > 0. Consider the following system.

(3.1)





v′(t) = −(d1 + e1m1)v(t),
w′(t) = (−d2 + e2v(t))w(t),

}
t 6= nT,

v(t+) = v(t) + p,

w(t+) = w(t).

}
t = nT,

Then, by Lemmas 2.4 and 2.6, we can obtain z(t) ≥ w(t) and a periodic solution
v∗(t) of the subsystem (3.1), where

v∗(t) =
p exp(−(d1 + e1m1)(t− nT ))

1− exp(−(d1 + e1m1)T )
, t ∈ (nT, (n + 1)T ], n ∈ N.
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Since |v(t)− v∗(t)| → 0 as t →∞, we have v(t) ≥ v∗(t)− ε1. Thus

(3.2) w′(t) ≥ (−d2 + e2(v∗(t)− ε1))w(t).

Integrating (3.2) on (nT, (n + 1)T ], we get

w((n + 1)T ) ≥ w(nT+) exp
(∫ (n+1)T

nT

−d2 + e2(v∗(t)− ε1)dt
)

= w(nT )R

Therefore z((n + k)T ) ≥ w((n + k)T ) ≥ w(nT )Rk → ∞ as k → ∞ which is a
contradiction to the boundedness of z(t).

(Step 2) Without loss of generality, we may let z(t1) = m1. If z(t) ≥ m1 for all
t > t1, then the subsystem (2.5) is permanent. If not, we may let t2 = inf

t>t1
{z(t) <

m1}. Then z(t) ≥ m1 for t1 ≤ t ≤ t2 and, by continuity of z(t), we have z(t2) = m1

and t1 < t2. There exist a t′(> t2) such that z(t′) ≥ m1 by step 1. Set t3 =
inft>t2{z(t) ≥ m1}. Then z(t) < m1 for t2 < t < t3 and z(t3) = m1. We can
continue this process by using step 1. If the process is stopped in finite times, we
complete the proof. Otherwise, there exists an interval’s sequence [t2k, t2k+1], k ∈ N,
which has the following property : z(t) < m1, t ∈ (t2k, t2k+1), t2k−1 < t2k ≤ t2k+1

and z(tn) = m1, where k, n ∈ N. Let T0 = sup{t2k+1− t2k|k ∈ N}. If T0 = ∞, then
we can take a subsequence {t2ki} satisfying t2ki+1 − t2ki → ∞ as ki → ∞. As in
the proof of the first step, this will lead to a contradiction to the boundedness of
z(t). Then we obtain T0 < ∞. Note that

z(t) = z(t2k) exp
(∫ t

t2k

−d2 + e2(v∗(s)− ε1)ds
)

≥ m1 exp(−d2T0) ≡ m2, t ∈ (t2k, t2k+1], k ∈ N.

Thus we obtain that lim inf
t→∞

z(t) ≥ m2. Therefore we complete the proof. ¤

Theorem 3.2. If
d1d2T

e2
< p <

ad1T

c
, then the system (1.2) is permanent.

Proof. Consider two subsystem of the system (1.2) as follows:

(3.3)





x′1(t) = x1(t)(a− bx1(t)− cy1(t)),
y′1(t) = y1(t)(−d1 + c1x1(t)),

}
t 6= nT,

x1(t+) = x1(t),
y1(t+) = y1(t) + p.

}
t = nT,

and
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(3.4)





y′2(t) = y2(t)(−d1 − e1z2(t)),
z′2(t) = z2(t)(−d2 + e2y2(t)),

}
t 6= nT,

y2(t+) = y2(t) + p,

z2(t+) = z2(t).

}
t = nT,

It follows from Lemma 2.4 that y1(t) ≥ y(t) , y2(t) ≤ y(t), x1(t) ≤ x(t), and

z2(t) ≤ z(t). If p <
ad1T

c
, by Theorem 2.10 , the subsystem (3.3) is permanence.

Thus we can take T1 > 0 and m1 > 0 such that x(t) ≥ m1 for t ≥ T1. Further,

if
d1d2T

e2
< p, by Theorem 3.1, the subsystem (3.4) is also permanent. Therefore,

there exists T2 > 0 and m2,m3 > 0 such that y(t) ≥ m2 and z(t) ≥ m3 for t ≥ T2.
The proof is complete. ¤
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Figure 1: Phase portrait of the system (1.2) with a = 2, b = 0.0002, c = 1, d1 = 0.3, c1 = 0.3,
e1 = 0.05, d2 = 0.01, e2 = 0.0025 and an initial point (x(0), y(0), z(0)) = (5, 2, 4) when p = 10.
(a)-(c) time series of x, y and z.
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Figure 2: Phase portrait of the system (1.2) with a = 2, b = 0.0002, c = 1, d1 = 0.3, c1 =
0.3, e1 = 0.05, d2 = 0.01, e2 = 0.0025 when p = 9. (a) (x(0), y(0), z(0)) = (5, 2, 0), (b)
(x(0), y(0), z(0)) = (5, 2, 4).
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Figure 3: Phase portrait of the system (1.2) with a = 2, b = 0.0002, c = 1, d1 = 0.3, c1 =
0.3, e1 = 0.05, d2 = 0.01, e2 = 0.0025 when p = 20. (a) (x(0), y(0), z(0)) = (0, 2, 4), (b)
(x(0), y(0), z(0)) = (5, 2, 4).
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Figure 4: Phase portrait of the system (1.2) with a = 5.0, b = 0.02, c = 0.5, c1 = 0.5, d1 =
0.1, d2 = 0.01, e1 = 0.05, e2 = 0.05 and T = 10. and an initial point (x(0), y(0), z(0)) = (5, 2, 4)
when p = 7.

4. Numerical examples

In this section we consider the following three cases.

(1) a = 2, b = 0.0002, c = 1, d1 = 0.3, c1 = 0.3, e1 = 0.05, d2 = 0.01, e2 = 0.0025
and T = 16.

(2) a = 5.0, b = 0.02, c = 0.5, c1 = 0.5, d1 = 0.1, d2 = 0.01, e1 = 0.05, e2 = 0.05
and T = 10.

(3) a = 4.0, b = 0.01, c = 1.0, c1 = 0.7, d1 = 0.3, d2 = 0.4, e1 = 1.0, e2 = 0.5
and T = 5.

For (1), by Lemma 2.1, we know the system (1.1) does not have positive equi-
librium, but exists a globally stable equilibrium point C = (1, 1.9980, 0). From
Theorem 2.7, we know that the lowest-level prey and top predator free periodic so-
lution (0, y∗(t), 0) of the system (1.2) is locally stable if 9.6 < p < 19.2.(see Figure
1). When p < 9.6 and z(0) = 0, we know from Theorem 2.10 that the prey and
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mid-predator can coexist.(see Figure 2(a)). Actually, Figure 2(b) illustrates the
three species can also coexist. i.e. the system may be permanent even if p < 9.6.
On the contrary, when p > 19.2 and x(0) = 0, we know from Theorem 3.1 that
the mid-predator and top predator can coexist.(see Figure 3(a)). But, Figure 3(b)
shows that the system (1.2) may not be permanent even if we take x(0) > 0. For
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Figure 5: Phase portrait of the system (1.2) with a = 4.0, b = 0.01, c = 1.0, c1 = 0.7, d1 =
0.3, d2 = 0.4, e1 = 1.0, e2 = 0.5 and an initial point (x(0), y(0), z(0)) = (5, 2, 4) when p = 3.

(2), by Lemma 2.1, we know the system (1.1) has a globally asymptotically stable
positive equilibrium point E∗ = (13750, 1.25, 82494). Moreover, from Theorem 3.2,
we see the system (1.2) is permanent when 0.2 < p < 10(see Figure 4).

For (3), by Lemma 2.1, we know the system (1.1) has a globally asymptotically
stable positive equilibrium point E∗ = (320, 0.8, 223.8). It follows from 3.2 that the
system (1.2) is permanent if 1.2 < p < 6(see Figure 5).

5. Conclusion

In this paper, we have studied a three species food chain system with Lokta-
Volterra functional response and impulsive perturbations. We have found the con-
dition for permanence of this system and the subsystem of having no prey by using
the comparison theorem. In addition, we have given numerical examples. These
have shown that the condition found in this paper may be not optimal. We will
discuss about this fact in the next paper.
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