• Title/Summary/Keyword: three-phase faults

Search Result 108, Processing Time 0.023 seconds

Classification of High Impedance Fault Patterns by Recognition of Linear Prediction coefficients (선형 예측 계수의 인식에 의한 고저항 지락사고 유형의 분류)

  • Lee, Ho-Seob;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1353-1355
    • /
    • 1996
  • This paper presents classification of high impedance fault pattern using linear prediction coefficients. A feature of neutral phase current is extracted by the linear predictive coding. This feature is classified into faults by a multilayer perceptron neural network. Neural network successfully classifies test data into three faults and one normal state.

  • PDF

A Study on The Diagnosis of Broken Rotor Bars in Three Phase Squirrel-Case Induction Motor (3상 농형 유도전동기 회전자 바의 고장진단에 관한 연구)

  • Kim, K.W.;Kwon, J.L.;Lee, K.J.;Kim, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.635-637
    • /
    • 2001
  • The faults of the squirrel cage induction motor is grew increasingly complex as the faults resulting in the shorting of a stator winding and the broken rotor bar or cracked rotor end ring, bearing faults, and so on. The users of electrical machines initially relied on simple protections such as over-current, over-voltage, earth-fault, etc. to ensure safe and reliable operation. but this method cause heavy financial losses and the threat of safety therefore it has now become very important to diagnose faults at there very inception. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

Problem Analysis by Iron Core Structure of the Transformer on Asymmetric three Phase lines and Prevention Measures (비대칭 3상 선로에서 변압기의 철심구조별 문제점 분석 및 방지대책)

  • Shin, Dong-Yeol;Yun, Dong-Hyun;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1536-1541
    • /
    • 2012
  • The study analyzed problems by iron core structure of the three phased transformer on asymmetric three phase lines, which included line disconnections, ground faults, COS OFF, and unbalanced loads on the power distribution system. In particular, by analyzing PT combustion cases within the MOF, the study was able to analyze the combustion cause of the core-type transformer and its effect on the system, conduct simulations and practice demonstrations on the characteristics for each iron core structure of the three phase transformer using PSCAD/EMTDC, and suggest measures to prevent the combustion of the core-type transformer.

A Study on Development of Open-Phase Protector Having Leakage Current Generation and Incapable Operation Prevention at Open-Phase Accident (결상 시 누전전류 발생과 오동작 방지 기능을 갖는 결상보호기 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.182-187
    • /
    • 2015
  • In the three-phase power system, when any one-phase or two-phases is open-phase, the unbalanced current flows and the single-phase power supplies to three-phase loads. Specially, motor coil and transformer coil receive over-current. As a result, great damage as well as electrical fire can occur to the power system. In order to improve these problems, this paper proposes that an open-phase detection device is designed by a new algorithm using electric potential difference between the resultant voltage of neutral point and ground, and a control circuit topology of open-phase protector is composed of highly efficient semiconductor devices. It improves response speed and reliability. The control algorithm circuit also operates the cut-off of a conventional residual current protective device (RCD) which flows an enforced leakage current to ground wire at open-phase accident. Furthermore, time delay circuit is added to prevent the incapable operation of open-phase protector about instantaneous open-phase not open-phase fault. The time delay circuit improves more reliability.

The characteristic of leakage current of ZnO block varistor according to fault conditions of three-phase four-wire distribution system (3상 배전계통의 고장조건에 따른 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee, B.H.;Choi, H.S.;Kang, S.M.;Park, K.Y.;Lee, S.B.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.174-177
    • /
    • 2003
  • Kinds of most frequent faults happened on overhead distribution system are the single line-to-ground fault, the line-to-line fault and the two line-to-ground fault. Occasionally, the three line-to-ground fault and the disconnection of a wire are happened in severe conditions. In this study, the single line-to-ground fault, the line-to-line fault, two line-to-ground fault on three-phase four-wire overhead distribution system were experimentally simulated and characteristics of total leakage current of distribution arrester caused by these faults were investigated. Also, the changing aspect of total leakage current of distribution arrester caused by voltage variation was investigated. In a consequence, abnormal voltages caused by voltage variation, the line-to-line fault, the two line-to-ground fault have a little effect on total leakage current of ZnO arrester. But abnormal voltages caused by the single line-to-ground fault have an important effect on total leakage current of ZnO arrester.

  • PDF

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

The study of Method for the Diagnosis of Transformers Trouble

  • Song, Jae-Tae;Jeong, Seung-Cheol;Choi, Hyun-Seob;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.1-118
    • /
    • 2001
  • In this paper, we suggest a new distribution model for a single phase transformer which is different from the existing model which was modeled for only primary parts, but new distribution model is modeled for primary and secondary parts. Using this model, we simulate various faults of the transformer to know how the transfer function vary from the normal one, i.e., the trend of the variation of transfer function. As an another approach, we measure the voltage and current of a three phase transformer while various faults are made at the transformer. From the simulation of the model and experiment, we fine some trends of the variation of transfer function.

  • PDF

Detection and Classification of Demagnetization and Short-Circuited Turns in Permanent Magnet Synchronous Motors

  • Youn, Young-Woo;Hwang, Don-Ha;Song, Sung-ju;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1614-1622
    • /
    • 2018
  • The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.