• Title/Summary/Keyword: three-dimensional velocity

Search Result 1,154, Processing Time 0.031 seconds

Understanding of Laminar Burning Velocity within a Length Scale Domain (길이 스케일이 관여된 층류 화염의 연소 속도 이해)

  • Jung, Yongjin;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.77-78
    • /
    • 2015
  • Laminar burning velocities have been predicted by constant volume combustion chamber, counter flow burner and others. In this study, the measured flame propagation velocities in an assembled annular stepwise diverging tube were plotted with respect to equivalence ratio, length scale, and velocity scale. Three dimensional approach to understand the flame propagation velocity including laminar burning velocity is investigated, and the surface provides the correlation among quenching distance, propagation velocity, and equivalence ratio.

  • PDF

Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model (MIRA Vehicle Model 주위의 3차원 난류유동 예측)

  • 명현국;진은주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

Flow Characteristics of Inclined Turbulent Jet Issuing into Turbulent Boundary Layer Developing on Concave and Convex Surfaces (오목면 및 볼록면에 존재하는 난류경계층유동과 경사지게 분사되는 난류제트의 유동특성)

  • 이상우;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.302-312
    • /
    • 1992
  • Three dimensional velocity measurements of a 35.deg. inclined jet issuing into turbulent boundary layer on both concave and convex surfaces have been conducted. To investigate solely the effect of each curvature on the flow field, streamwise pressure variations are minimized by adjusting the shape of the opposite wall in the curved region. From the measured velocity components, streamwise mean vorticities are calculated to determine jet-crossflow interface. The results on convex surface show that the injected jet is separated from the wall and the bound vortex maintains its structure far downstream. On concave surface, the secondary flow in the jet cross-sections are enhanced and in some downstream region from the jet exit, the flow on the concave surface has been developed to Taylor-Gortler vortices

Strong Orientation Anchoring and Shear Flow of a Nematic Liquid Crystal

  • Won Hee HAN
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2024
  • A nonlinear numerical analysis of orientation and velocity fields of the full Ericksen-Leslie theory for a nematic liquid crystal under shear flow is given. We obtained for the first time the three-dimensional orientation and two component velocity profiles evolutions for both in- and out-of-shear plane orientation anchorings. Complex evolution routes to steady state were found even for shear aligning nematic. As the Ericksen number increases monotonic evolution of velocity and orientation shifts towards multi-region nucleating director rotation growth with complex secondary flow generations. We found that contrary to the in-shear-plane anchorings like homeotropic or parallel anchorings, binormal anchoring gives rise to substantial non-planar three-dimensional orientation with nonzero secondary flow.

An Upper Bound Analysis of the Three-Dimensional extrusion of Shapes with the Use of Dual Stream Functions( I ) (유선함수를 이용한 3 차원압출의 상계해석)

  • 김희송;조용이
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.85-94
    • /
    • 1992
  • This paper, discribes analysis of theree - dimensional extrusion with the use of dual stream functions, By this method admissible velocity fields for the extrusion of three- dimensional flow was newly derived kinematically. For square section the extrusion pressure was calculated by numerical solution program which was based on the upper bound analysis. The relationship between relative extrusion pressure and reduction of area, relative die length and constant friction factors were successfully calculated which was newly developed in this study. The results could be applied to design extrusion die.

  • PDF

Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes (유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석)

  • Myong, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF