• Title/Summary/Keyword: three-dimensional dynamic analysis

Search Result 576, Processing Time 0.032 seconds

Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2373-2377
    • /
    • 2009
  • In this paper, the threshold voltage characteristics have been analyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for PinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage (구동 전압을 고려한 3차원 등가자기회로방법에 의한 선형 직류전동기의 동특성 해석)

  • Ha, Kyung-Ho;Yeom, Sang-Bu;Hong, Jung-Pyo;Hur, Jin;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • In order to design the Linear DC Motor (LDM) with improved characteristics, transient and steady state analysis are required. furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis of LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the stater at each time step, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the Proposed method.

Vibrations of Complete Paraboloidal Shells with Variable Thickness form a Three-Dimensional Theory

  • Chang, Kyong-Ho;Shim, Hyun-Ju;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.113-128
    • /
    • 2004
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid paraboloidal and complete (that is, without a top opening) paraboloidal shells of revolution with variable wall thickness. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. The ends of the shell may be free or may be subjected to any degree of constraint. Displacement components $u_r,\;u_{\theta},\;and\;u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in ${\theta}$, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the paraboloidal shells of revolution are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the complete, shallow and deep paraboloidal shells of revolution with variable thickness. Numerical results are presented for a variety of paraboloidal shells having uniform or variable thickness, and being either shallow or deep. Frequencies for five solid paraboloids of different depth are also given. Comparisons are made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.

  • PDF

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Dynamic behavior of footbridges strengthened by external cable systems

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.595-608
    • /
    • 2018
  • This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

Dynamic Analysis of a Large Tilting Pad Journal Bearing Including the Effects of Temperature Rise and Turbulence (온도상승 및 난류효과를 고려한 대형 틸팅패드 저널베어링의 동특성 해석)

  • 하현천;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.313-321
    • /
    • 1995
  • The effects of the temperature rise and the turbulence are very important factors to predict the accurate performance of a large tilting pad journal bearing. In this study, the dynamic characteristics of a large tilting pad journal bearing are analyzed, taking into account the three dimensional variation of lubricant viscosity and turbulence. The effects of the temperature rise and the turbulence on the stiffness and damping coefficients are investigated in comparison with the results from the laminar or isothermal theory. The stiffness and damping coefficients increase due to the turbulence but decrease due to the temperature rise. The results show that the effects of both the temperature rise and turbulence must be considered simultaneously in order to predict the dynamic characteristics of a large tilting pad journal bearing more accurately.

The study on the dynamic characteristics of steel structure system for vibration estimation in hospital building (철골조 고층 병원건물의 진동예측을 위한 동적특성 및 설계인자에 관한 연구)

  • Jang, Kang-Seok;Kim, Young-Chan;Ahn, Sang-Kyung;Na, Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.458-461
    • /
    • 2008
  • The primary objective of this study is to provide simple analytical tools to estimate dynamic characteristics of steel framed floor system in hospital building for vibration serviceability due to human activities, bogie, medical equipment. and so on. In order to evaluate the dynamic characteristics and vibration levels according to steel framed floor system, we had executed impact test and measurement on steel structure floor system in various hospital buildings. But perhaps most importantly, how to make the most of deduced design factor for design of hospital building. therefore we presented the access method such as the three-dimensional F.E. numerical analysis on the basis of the design drawing, and the properties of all floors for estimation of vibration level in hospital building.

  • PDF

Contact Parameter Computation and Analysis of Air Circuit Breaker with Permanent Magnet Actuator

  • Fang, Shuhua;Lin, Heyun;Ho, S.L.;Wang, Xianbing;Jin, Ping;Huang, Yunkai;Yang, Shiyou
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.595-602
    • /
    • 2013
  • An air circuit breaker (ACB) with novel double-breaker contact and permanent magnet actuator (PMA) is presented. Three-dimensional (3-D) finite element method (FEM) is employed to compute the electro-dynamic repulsion forces, including the Holm force and Lorentz force, which are acting on the static and movable contacts. The electro-dynamic repulsion forces of different contact pieces are computed, illustrating there is an optimal number of contact pieces for the ACB being studied. The electro-dynamic repulsion force of each contact, which varies from the outer position to the inner position, is also computed. Finally, the contacts of the double-breaker are manufactured according to the analyzed results to validate the simulations.