• Title/Summary/Keyword: three reanalysis data

Search Result 36, Processing Time 0.018 seconds

Characteristic Variations of Upper Jet Stream over North-East Asian Region during the Recent 35 Years (1979~2013) Based on Four Reanalysis Datasets (재분석자료들을 이용한 최근 35년(1979~2013) 동북아시아 상층제트의 변동특성)

  • So, Eun-Mi;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.235-248
    • /
    • 2015
  • In this study, we analyzed the three dimensional variations (latitude, longitude, and height of Jet core) and wind speed of upper Jet stream in the East Asian region using recent 35 years (1979~2013) of four reanalysis data (NCEP-R2, MERRA, ERA-Interim. and JRA-55). Most of Jet core is located in $30.0{\sim}37.5^{\circ}N$ and $13.0{\sim}157.5^{\circ}E$ although there are slight differences among the four reanalysis data. The wind speed differences among reanalysis are about $3m\;s^{-1}$ regardless of seasons, the weakest in NCEP-R2 and the strongest in JRA-55. Although significance level is not high, most of reanalysis showed that the Jet core has a tendency of southward moving during spring and winter, but moving northward during summer and fall. This amplified seasonal variation of Jet core suggests that seasonal variations of weather/climate can be increased in the East Asian region. The longitude of Jet core has a tendency of systematically westward moving and decreasing of zonal variations regardless of averaging methods and reanalysis data. In general, the Jet core shows a tendency of moving south-west-ward and upward, getting intensified during spring and winter regardless of the reanalysis data. However, the Jet core shows a tendency of moving westward and downward, and getting weakened during summer. In fall, there were no distinctive trends not only in wind speed but also three dimensional locations compared to other seasons. Although the significance levels are not high and variation patterns are slightly different according to the reanalysis data, our findings are more or less different from the previous results. So, more works are needed to clarify the three dimensional variation patterns of Jet core over the East Asian region as a result of global warming.

Three Reanalysis Data Comparison and Monsoon Regional Analysis of Apparent Heat Source and Moisture Sink (겉보기 열원 및 습기 흡원의 세 재분석 자료 비교와 몬순 지역별 분석)

  • Ha, Kyung-Ja;Kim, Seogyeong;Oh, Hyoeun;Moon, Suyeon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.415-425
    • /
    • 2018
  • The roles of atmospheric heating formation and distribution on the global circulation are of utmost importance, and those are directly related to not only spatial but also temporal characteristics of monsoon system. In this study, before we clarify the characteristics of apparent heat source <$Q_1$> and moisture sink <$Q_2$>, comparisons of three reanalysis datasets (NCEP2, ERA-Interim, and JRA-55) in its global or regional patterns are performed to clearly evaluate differences among datasets. Considering inter-hemispheric difference of global monsoon regions, seasonal means of June-July-August and December-January-February, which is summer (winter) and winter (summer) in the Northern (Southern) Hemisphere are employed respectively. Here we show the characteristics of eight different regional monsoon regions and find contributions of <$Q_2$> to <$Q_1$> for the regional monsoon regions. Each term in apparent heat source and moisture sink is shown to come from the ERA-Interim dataset, since the ERA-Interim could be representative of three datasets. The NCEP2 data has a different characteristic in the ratio of <$Q_2$> and <$Q_1$> because it overestimates <$Q_1$> compared to the other two different datasets. The Australia monsoon has been performing better over time, while some regional monsoons (South America, North America, and North Africa) have been showing increasing data inconsistency. In addition, the three reanalysis datasets are getting different marching with time, in particular since the early 2000s over South America, North America, and North Africa monsoon regions. The recent inconsistency among the three datasets that may be associated with the global warming hiatus remains unexplored.

Eddy Momentum, Heat, and Moisture Transports During the Boreal Winter: Three Reanalysis Data Comparison (북반구 겨울철 에디들에 의한 운동량, 열 그리고 수분 수송: 세 가지 재분석 자료 비교)

  • Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.649-663
    • /
    • 2016
  • This study investigates eddy transports in terms of space and time for momentum, heat, and moisture, emphasizing comparison of the results in three reanalysis data sets including ERA-Interim from the European Center for Medium-range Weather Forecasts (ECMWF), NCEP2 from the National Center for Environmental Prediction and the Department of Energy (NCEP-DOE), and JRA-55 from the Japan Meteorological Agency (JMA) during boreal winter. The magnitudes for eddy transports of momentum in ERA-Interim are represented as the strongest value in comparison of three data sets, which may be mainly come from that both zonal averaged meridional and zonal wind tend to follow the hierarchy of ERA-Interim, NCEP2, and JRA-55. Whereas in relation to heat and moisture eddy transports, those of NCEP2 are the strongest, implying that zonal averaged air temperature (specific humidity) tend to follow the raking of NCEP2, ERA-Interim, and JRA-55 (NCEP2, JRA-55, and ERA-Interim), except that transient eddy transports for heat in ERA-Interim are the strongest involving both meridional wind and air temperature. The stationary and transient eddy transports in the context of space and time correlation, and intensity of standard deviation demonstrate that the correlation (intensity of standard deviation) influence the structure (magnitude) of eddy transports. The similarity between ERA-Interim and NCEP2 (ERA-Interim and JRA-55) of space correlation (time correlation) closely resembles among three data sets. A resemblance among reanalysis data sets of space correlation is larger than that of time correlation.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

Mean Meridional Circulation-Eddy Interaction in Three Reanalysis Data Sets during the Boreal Winter (세 가지 재분석 자료에서의 겨울철 북반구 평균 자오면 순환-에디 상호작용)

  • Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.543-557
    • /
    • 2015
  • The present study examines an interaction between the eddy and mean meridional circulation (MMC) comparing the results in three reanalysis data sets including ERA-Interim, NCEP2, and JRA-55 during the boreal winter in the Northern Hemisphere. It is noteworthy that the JRA-55 tends to produce stronger MMC compared to those of others, which is mainly due to the weak eddy flux. ERA-Interim represents the ensemble averages of MMC. The MMC-eddy interaction equation was adopted to investigate the scale interaction of the eddy momentum flux (EMF), eddy heat flux (EHF), and diabatic heating (DHT) with MMC. The EMF (EHF) shows a significant correlation coefficient with streamfunction under (above) 200 hPa-level. The perturbation (time mean) part of each eddy is dominant compared to another part in the EMF (EHF). The DHT is strongly interacted with streamfunction in the region between the equator and extra-tropical latitude over whole vertical column. Thus, the dominant term in each significant region modulates interannual variability of MMC. The inverse (proportional) relationship between MMC and pressure (meridional) derivative of the momentum (heat) divergence contributions is well represented in the three reanalysis data sets. The region modulated interannual variability of MMC by both EMF and DHT (EHF) is similar in ERA-Interim and JRA-55 (ERA-Interim and NCEP2). JRA-55 shows a lack of significant region of EHF due to the high resolution, compared to other data sets.

The Accuracy of Satellite-composite GHRSST and Model-reanalysis Sea Surface Temperature Data at the Seas Adjacent to the Korean Peninsula (한반도 연안 위성합성 및 수치모델 재분석 해수면온도 자료의 정확도)

  • Baek, You-Hyun;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.213-232
    • /
    • 2019
  • This study evaluates the accuracy of four satellite-composite (OSTIA, AVHRR, G1SST, FNMONC-S) and three model-reanalysis (HYCOM, JCOPE2, FNMOC-M) daily sea surface temperature (SST) data around the Korean Peninsula (KP) using ocean buoy data from 2011-2016. The results reveal that OSTIA has the lowest root mean square error (RMSE; 0.68℃) and FNMOC-S/M has the highest correction coefficients (r = 0.993) compared with observations, while G1SST, JCOPE2, and AVHRR have relatively larger RMSEs and smaller correlations. The large RMSEs were found in the western coastal regions of the KP where water depth is shallow and tides are strong, such as Chilbaldo and Deokjeokdo, while low RMSEs were found in the East Sea and open oceans where water depth is relatively deep such as Donghae, Ulleungdo, and Marado. We found that the main sources of the large RMSEs, sometimes reaching up to 5℃, in SST data around the KP, can be attributed to rapid SST changes during events of strong tidal mixing, upwelling, and typhoon-induced mixing. The errors in the background SST fields which are used in data assimilations and satellite composites and the missing in-situ observations are also potential sources of large SST errors. These results suggest that both satellite and reanalysis SST data, which are believed to be true observation-based data, sometimes, can have significant inherent errors in specific regions around the KP and thus the use of such SST products should proceed with caution particularly when the aforementioned events occur.

Prediction of Annual Energy Production of Wind Farms in Complex Terrain using MERRA Reanalysis Data (MERRA 재해석 자료를 이용한 복잡지형 내 풍력발전단지 연간에너지발전량 예측)

  • Kim, Jin-Han;Kwon, Il-Han;Park, Ung-Sik;Yoo, Neungsoo;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • The MERRA reanalysis data provided online by NASA was applied to predict the annual energy productions of two largest wind farms in Korea. The two wind farms, Gangwon wind farm and Yeongyang wind farm, are located on complex terrain. For the prediction, a commercial CFD program, WindSim, was used. The annual energy productions of the two wind farms were obtained for three separate years of MERRA data from June 2007 to May 2012, and the results were compared with the measured values listed in the CDM reports of the two wind farms. As the result, the prediction errors of six comparisons were within 9 percent when the availabilities of the wind farms were assumed to be 100 percent. Although further investigations are necessary, the MERRA reanalysis data seem useful tentatively to predict adjacent wind resources when measurement data are not available.

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Merging technique for evapotranspiration based on in-situ, satellite, and reanalysis data using modifed KGE fusion method (수정된 KGE 방법을 활용한 지점, 인공위성, 재분석 자료 기반 증발산 융합 기술)

  • Baik, Jongjin;Jeong, Jaehwan;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.

Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data (KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석)

  • Jang, Min;You, Cheol-Hwan;Jee, Joon-Bum;Park, Sung-Hwa;Kim, Sang-il;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.