Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.1.053

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation  

Park, Jinkyung (School of Earth and Environmental Sciences, Seoul National University)
Kim, Seo-Yeon (School of Earth and Environmental Sciences, Seoul National University)
Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.29, no.1, 2019 , pp. 53-59 More about this Journal
Abstract
The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.
Keywords
Troposphere ozone; ozonesonde; Pohang ozone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tanimoto, H., T. Ohara, and I. Uno, 2009: Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998-2007. Geophys. Res. Lett., 36, L23802, doi:10.1029/2009GL041382.   DOI
2 Tarasick, D. W., and Coauthors, 2007: Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for stratospheric input. J. Geophys. Res., 112, D12S22, doi:10.1029/2006JD007782.   DOI
3 Thompson, A. M., and Coauthors, 2007: Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res., 112, D12S13, doi:10.1029/2006JD007670.   DOI
4 Wargan, K., G. Labow, S. Frith, S. Pawson, N. Livesey, and G. Partyka, 2017: Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. J. Climate, 30, 2961-2988, doi:10.1175/JCLI-D-16-0699.1.   DOI
5 Wild, O., and H. Akimoto, 2001: Intercontinental transport of ozone and its precursors in a three dimensional global CTM. J. Geophys. Res., 106, 27729-27744, doi:10.1029/2000JD000123.   DOI
6 Zhao, C., Y. Wang, Q. Yang, R. Fu, D. Cunnold, and Y. Choi, 2010: Impact of East Asian summer monsoon on the air quality over China: View from space. J. Geophys. Res., 115, D09301, doi:10.1029/2009JD012745.   DOI
7 Feng, Z., K. Kobayashi, and E. A. Ainsworth, 2008: Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob. Change Biol., 14, 2696-2708, doi:10.1111/j.1365-2486.2008.01673.x.   DOI
8 Fishman, J., J. K. Creilson, P. A. Parker, E. A. Ainsworth, G. G. Vining, J. Szarka, F. L. Booker, and X. Xu, 2010: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos. Environ., 44, 2248-2256, doi:10.1016/j.atmosenv.2010.01.015.   DOI
9 Flemming, J., A. Inness, H. Flentje, V. Huijnen, P. Moinat, M. G. Schultz, and O. Stein, 2009: Coupling global chemistry transport models to ECMWF's integrated forecast system. Geosci. Model Dev., 2, 253-265, doi:10.5194/gmd-2-253-2009.   DOI
10 Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi:10.1175/JCLI-D-16-0758.1.   DOI
11 Inness, A., and Coauthors, 2013: The MACC reanalysis: an 8-yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 4073-4109, doi:10.5194/acp-13-4073-2013.   DOI
12 Katragkou, E., and Coauthors, 2015: Evaluation of near-surface ozone over Europe from the MACC reanalysis. Geosci. Model Dev., 8, 2299-2314, doi:10.5194/gmd-8-2299-2015.   DOI
13 Kim, H.-S., and Y.-S. Chung, 2003: Surface Ozone and Precursors Observed in a Rural Area of Korea 1993-2001. Asia-Pac. J. Atmos. Sci., 39, 689-698.
14 Kim, J. H., S.-H. Lee, Y.-K. Kim, H. W. Lee, and S.-K. Song, 2001: Characteristics of troposphere ozone over the Korean peninsula measured from Pohang ozonesonde. Atmosphere, 11, 98-102 (in Korean).   DOI
15 Cooper, O. R., and Coauthors, 2014: Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth., 2, 29, doi:10.12952/journal.elementa.000029.   DOI
16 Kim, Y.-K., Y.-S. Moon, S.-K. Song, and I.-B. Oh, 2002: Case Study of Surface Ozone Enhancement due to Vertical Transport of Tropospheric Ozone. Asia-Pac. J. Atmos. Sci., 38, 307-317 (in Korean with English abstract).
17 Ancellet, G., and F. Ravetta, 2005: Analysis and validation of ozone variability observed by lidar during the ESCOMPTE-2001 campaign. Atmos. Res., 74, 435-459, doi:10.1016/j.atmosres.2004.10.003.   DOI
18 Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22519-22544, doi:10.1029/98JD01020.   DOI
19 Cariolle, D., and M. Deque, 1986: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91, 10825-10846, doi:10.1029/JD091iD10p10825.   DOI
20 Cariolle, D., and H. Teyssedre, 2007: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations. Atmos. Chem. Phys., 7, 2183-2196, doi:10.5194/acp-7-2183-2007.   DOI
21 Dragani, R., 2011: On the quality of the ERA-Interim ozone reanalyses: comparisons with satellite data. Q. J. Roy. Meteor. Soc., 137, 1312-1326, doi:10.1002/qj.821.   DOI
22 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
23 Dethof, A., and E. V. Holm, 2004: Ozone assimilation in the ERA-40 reanalysis project. Q. J. Roy. Meteor. Soc., 130, 2851-2872, doi:10.1256/qj.03.196.   DOI
24 Dragani, R., 2010: On the quality of the ERA-Interim ozone reanalyses: comparisons with in situ data, ECMWF ERA Report Series 2, 19 pp [Available online at https://www.ecmwf.int/node/9111].
25 Emberson, L. D., and Coauthors, 2009: A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmos. Environ., 43, 1945-1953. doi:10.1016/j.atmosenv.2009.01.005.   DOI
26 Monks, P. S., and Coauthors, 2015: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 15, 8889-8973, doi:10.5194/acp-15-8889-2015.   DOI
27 Lin, M., T. Holloway, T. Oki, D. G. Streets, and A. Richter, 2009: Multiscale model analysis of boundary layer ozone over East Asia. Atmos. Chem. Phys., 9, 3277-3301, doi:10.5194/acp-9-3277-2009.   DOI
28 Luo, C., J. C. St. John, Z. Xiuji, K. S. Lam, T. Wang, and W. L. Chameides, 2000: A nonurban ozone air pollution episode over eastern China: Observations and model simulations. J. Geophys. Res., 105, 1889-1908, doi:10.1029/1999JD900970.   DOI
29 Monks, P. S., 2000: A review of the observations and origins of the spring ozone maximum. Atmos. Environ., 34, 3545-3561, doi:10.1016/S1352-2310(00)00129-1   DOI
30 Oltmans, S., and Coauthors, 2006: Long-term changes in tropospheric ozone. Atmos. Environ., 40, 3156-3173, doi:10.1016/j.atmosenv.2006.01.029.   DOI
31 Parrish, D. D., and Coauthors, 2012: Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmos. Chem. Phys., 12, 11485-11504, doi:10.5194/acp-12-11485-2012.   DOI
32 Pochanart, P., H. Akimoto, Y. Kinjo, and H. Tanimoto, 2002: Surface ozone at four remote inland sites and the preliminary assessment of the exceedances of its critical level in Japan. Atmos. Environ., 36, 4235-4250.   DOI
33 Solomon, P., E. Cowling, G. Hidy, and C. Furiness, 2000: Comparison of scientific findings from major ozone field studies in North America and Europe. Atmos. Environ., 34, 1885-1920, doi:10.1016/S1352-2310(99)00453-7.   DOI
34 Stain, O., J. Flemming, A. Inness, J. W. Kaiser, and M. G. Schultz, 2012: Global reactive gases forecasts and reanalysis in the MACC project. J. Integr. Environ. Sci., 9, 57-70, doi:10.1080/1943815X.2012.696545.   DOI