Browse > Article
http://dx.doi.org/10.14191/Atmos.2015.25.3.543

Mean Meridional Circulation-Eddy Interaction in Three Reanalysis Data Sets during the Boreal Winter  

Moon, Hyejin (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
Ha, Kyung-Ja (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
Publication Information
Atmosphere / v.25, no.3, 2015 , pp. 543-557 More about this Journal
Abstract
The present study examines an interaction between the eddy and mean meridional circulation (MMC) comparing the results in three reanalysis data sets including ERA-Interim, NCEP2, and JRA-55 during the boreal winter in the Northern Hemisphere. It is noteworthy that the JRA-55 tends to produce stronger MMC compared to those of others, which is mainly due to the weak eddy flux. ERA-Interim represents the ensemble averages of MMC. The MMC-eddy interaction equation was adopted to investigate the scale interaction of the eddy momentum flux (EMF), eddy heat flux (EHF), and diabatic heating (DHT) with MMC. The EMF (EHF) shows a significant correlation coefficient with streamfunction under (above) 200 hPa-level. The perturbation (time mean) part of each eddy is dominant compared to another part in the EMF (EHF). The DHT is strongly interacted with streamfunction in the region between the equator and extra-tropical latitude over whole vertical column. Thus, the dominant term in each significant region modulates interannual variability of MMC. The inverse (proportional) relationship between MMC and pressure (meridional) derivative of the momentum (heat) divergence contributions is well represented in the three reanalysis data sets. The region modulated interannual variability of MMC by both EMF and DHT (EHF) is similar in ERA-Interim and JRA-55 (ERA-Interim and NCEP2). JRA-55 shows a lack of significant region of EHF due to the high resolution, compared to other data sets.
Keywords
Mean meridional circulation; mean flow-eddy interaction; Reanalysis data; ERA-Interim; NCEP2; JRA-55;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Becker, E., G. Schmitz, and R. Geprags, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49, 182-199.   DOI
2 Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705.   DOI
3 Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett., 35, L18709, doi:10.1029/2008GL035084.   DOI
4 Dee, D., and Coauthors, 2011: The ERA-interim reanalysis:configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597.   DOI   ScienceOn
5 Ebita, A., and Coauthors, 2011: The Japanese 55-year reanalysis "JRA-55": An interim report. Sci. Online Lett. Atmos., 7, 149-152.
6 Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvergica, 5, 19-60.
7 Grotjahn, R., 1993: Global atmosphere circulations. Observations and theories, Oxford University Press, 249-264.
8 Hare, S. H. E., and I. N. James, 2001: Baroclinic developments in jet entrances and exits. I: linear normal modes. Quart. J. Roy. Meteor. Soc., 127, 1293-1303.   DOI
9 James, I. N., 1995: Introduction to circulating atmosphere. Cambridge University Press, 117-125.
10 Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 1677-1694.   DOI
11 Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: a theory for low-frequency modes. J. Atmos. Sci., 63, 1695-1708.   DOI
12 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.   DOI
13 Kang, I.-S., J.-S. Kug, M.-J. Lim, and D.-H. Choi, 2011: Impact of transient eddies on extratropical seasonalmean predictability in DEMETER models. Clim. Dynam., 37, 509-519.   DOI
14 Kuo, H.-L., 1956: Forced and free merdional circulations in the atmosphere. J. Meteor., 13, 561-568.   DOI
15 Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 2859-2871.   DOI
16 Kug, J.-S., and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, doi:10.1029/2008GL036435.   DOI
17 Kug, J.-S., F.-F. Jin, J. Park, H.-L. Ren, and I.-S. Kang, 2010: A general rule for synoptic-eddy feedback onto lowfrequency flow. Clim. Dynam., 35, 1011-1026.   DOI   ScienceOn
18 Kuroda, Y., and K. Kodera, 2004: Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.   DOI
19 Lee, S.-S., and K.-J. Ha, 2009: Eddy-mean flow interaction and its association with bonin high: Comparison of July and August. Asia-Pac. J. Atmos. Sci., 45, 483-498.
20 Lee, S.-S., J.-Y. Lee, B. Wang, F.-F. Jin, W.-J. Lee, and K.-J. Ha, 2011: A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect. Clim. Dynam., 36, 1173-1188.   DOI
21 Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim. Dynam., 39, 313-327.   DOI
22 Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an Aquaplanet GCM to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769-783.   DOI
23 Seo, K.-H., D. M. W. Frierson, and J.-H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 40, doi:10.1002/2014GL060868.   DOI
24 Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, DOI:10.1029/2006GL028443.   DOI   ScienceOn
25 Peixoto, J. P., and A. H. Oort, 1992: Physics of climate. American Institute of Physics, New York, N.Y., 520 pp.
26 Pfeffer, L. R., 1981: Wave-mean flow interactions in the atmosphere, J. Atmos. Sci., 38, 1340-1359.   DOI
27 Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.   DOI
28 Stone, P. H., and M.-S. Yao, 1987: Development of a twodimensional zonally averaged statistical-dynamical model. Part II: The role of eddy momentum fluxes in the general circulation and their parameterization. J. Atmos. Sci., 44, 3769-3786.   DOI
29 Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333-3350.   DOI   ScienceOn
30 Williamson, D. L., and Coauthors, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89.   DOI
31 Young, E. C., 1972: Partial Differential Equations: An Introductions. Allyn and Bacon, Boston, 346 pp.