• 제목/요약/키워드: three point bending test

검색결과 306건 처리시간 0.035초

삼차원 유리직물 강화 비닐에스테르 복합재의 기계적 특성 (Mechanical Properties of Three-dimensional Glass Fabric-reinforced Vinyl Ester Matrix Composites)

  • 박원배;박수진;이재락
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.715-718
    • /
    • 1998
  • 본 연구에서는 수직섬유의 길이가 서로 다른 삼차원 유리직물을 보강재로 사용하고, 매트릭스 수지로 비스페놀 타입 비닐 에스테르 (bisphenol type vinyl ester)를 사용하여 hand lay-up을 이용해 복합재료 (3D composites)를 제조하였다. 삼차원 유리직물의 수직섬유의 길이가 복합재료의 기계적 물성에 미치는 영향을 three-point bending test, flatwise compression test를 통해 조사하였다. Short-beam test법 통하여 복합재료에서의 섬유와 매트릭스 수지간의 계면접착강도를 나타내는 층간 전단강도를 구하였다. 시험 결과를 통하여 수직섬유의 길이가 복합재료의 기계적 물성 및 층간 전단강도에 많은 영향을 미침을 알 수 있었다.

  • PDF

표면파의 음향비선형 특성을 이용한 표면 피로열화 평가 (Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave)

  • 이재익;이태훈;장경영
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.415-420
    • /
    • 2009
  • 이 논문은 표면파의 비선형특성을 이용하여 재료 표면의 열화손상을 평가한 사례 연구의 결과를 보고한다. 이 연구에서는 3점 굽힘 피로시험에 의해 표면에 피로열화를 가한 알루미늄 T6 시편을 대상으로 표면파의 음향 비선형 파라미터를 측정하기 위한 실험장치를 구성하였으며, 피로시험 전후에서 측정된 비선형파라미터의 크기를 비교하였다. 특히 3점 굽힘 피로시험에 의한 표면피로손상은 시편의 중앙부 표면에 집중 될 것이 예상되므로 이 주변에서의 비선형 파라미터의 변화를 세밀히 관찰하였다. 실험결과 피로손상이 거의 없는 시편의 가장자리에서는 비선형 파라미터가 피로시험 전후에서 큰 변화가 없었지만, 표면 피로열화가 집중된 중앙부에서는 뚜렷하게 증가하는 것으로 나타났다.

치과용 복합레진의 파괴인성에 관한 실험적 연구 (A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS)

  • 박진훈;민병순;최호영;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제15권2호
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가 (Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure)

  • 정창균;윤석준;성대용;양동열;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

랫드에서 난소적출이 골다공증 발생에 미치는 영향 (Osteoporotic Changes after Ovariectomy in Rats)

  • 배춘식
    • 한국임상수의학회지
    • /
    • 제17권1호
    • /
    • pp.212-218
    • /
    • 2000
  • Osteoporosis is a bone disease associated with reduced bone mineral density resulting in debilitating bone fractures. The present study was carried out to determine the influence of ovariectomy(OVX) on serum level of sex steroid and bone metabolism, as well as bone mechanical property, in OVX subjects in comparison with controls. Body weight and food intake was significantly increased in OVX subjects than in controls. The serum level of estradiol(E2) was significantly lower in OVX subjects than in controls. The serum level of calcium and alkalin phosphatae were significantly increased in OVX subjects than in controls. The bone strength, based on the three point bending test, was not significantly different. Seven weeks after ovariectomy, the cavities in the bone reached 223% of the normal. In conclusion, seven weeks after ovariectomy osteoporo sis was evidently appeared.

  • PDF

AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구 (A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique)

  • 이진경;이준현;장일영
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구 (Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door)

  • 김재열;최순호
    • Tribology and Lubricants
    • /
    • 제31권1호
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성 (Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability)

  • 김미경;안병건;김진욱;박인덕;안석환;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

SMC 압축성형재의 기계적 물성 및 특성에 관한 연구 (A Study on Material Charaterization and Mechanical Properties of SMC Compression Molding Parts)

  • 김기택;정진호;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.139-148
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression molding parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, 130$^{\circ}C$ and 150$^{\circ}C$ and two different mold speeds, 15, 45mm/min were used for preparing the specimen of SMC compression molding parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts.

  • PDF

SMC 압축성형재의 기계적 물성 및 특성에 관한 연구 (A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts)

  • 김기택;임용택
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.