• 제목/요약/키워드: three dimensional motion

검색결과 1,019건 처리시간 0.032초

철봉 리발코(Rybalko) 동작의 운동학적 분석 (The Kinematic Analysis of the Rybalko Motion on the Horizontal Bar)

  • 이병원
    • 한국운동역학회지
    • /
    • 제16권1호
    • /
    • pp.109-117
    • /
    • 2006
  • The purpose of this study was done in order to investigate the Kinematical variables of the Rybalko motion on the Horizontal bar using the 3-dimensional cinematographic method. For this study, three excellent athletes take part in a 2003 Daegue universid game were chosen. The subject,s Rybalko motion was filmed with S-VHS camera at the speed of 60 fields per second and digitized the each fields. And the Kwon3D 3.1 version program was employed to obtain 3-dimensional data. As a result of this study. 1. A total time spent for performing Rybalko skill was Mean $2.52{\pm}0.13sec$. From starting down swing to releasing right hand the Mean $0.84{\pm}0.24sec$ was taken. 2. In the event 3 of Rybalko motion, that is, the moment which the right-hand is released on the bar, the center of mass must is employed at the position above the horizontal line of bar. In this research, the average vertical displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 3. In the event 5, that is, the moment which the right-hand is catched again on the bar, the center of mass is employed at the position before the vertical line of bar. In this research, the average horizontal displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 4. It has been seen that, at the moment of release of right-hand, lateral variation of center of mass is 13.395cm, vertical variation of center of mass is 7.41cm Thus, it is concluded that lateral variation of center of mass should be reduced for high grade to be acquired. 5. It has been founded that high speed of down swing influences speed of up swing, and that, in the motion of twist, the horizontal speed is little changed.

3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법 (Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation)

  • 박준형;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.537-542
    • /
    • 2011
  • 거울 신경 세포는 동물이 어떤 동작을 할 때와 그 동물이 다른 동물의 동일한 동작을 하는 것을 관찰 할 때, 똑같은 세포 발화를 하는 신경세포이다. 본 논문에서는 거울 신경 세포의 발화 원리를 이용하여 비슷한 방법으로 보이지 않는 부분에 대한 객체의 움직임을 추적하는 방법을 3차원 재구축 방법을 통해 제안한다. 거울 신경 세포 시스템과 같은 발화 원리를 통해 의도 인지 시스템을 구축하기 위해, 스테레오 카메라를 통해 획득한 두 개의 이미지 데이터를 통해 깊이 정보를 계산하여 3차원으로 재구축한다. 3차원 재구축을 통해 만들어진 이미지 데이터를 옵티컬 플로우를 사용하여 3차원 이미지에서 객체의 움직임 방향을 추정한다. Estimation 알고리즘인 칼만 필터를 사용하여 객체의 움직임 추정을 잡음에 강인하게 한다. 객체의 움직임 추정을 통하여 객체의 움직임에 따라 구축된 이미지 데이터를 히스토리화 하여 데이터를 저장한다. 객체의 일부분 혹은 전체가 다른 물체로 인해 가려져 스테레오 카메라 시야에서 사라졌을 때, 과거에 저장된 히스토리로 부터 데이터를 가져와 가려진 부분에 대한 객체의 원래의 모습을 복원한다. 이 복원을 통하여 움직임 추정을 한다.

마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발 (Development of Micro-bellows Actuator Using Micro-stereolithography Technology)

  • 강현욱;이인환;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF

A 3-dimensional Printed Molding Technique for the Management of Humeral Head Osteomyelitis

  • Moon, Young Lae;dev Bhardwaj, Harvinder;Kim, Boseon;Ryu, Kang Hyeon
    • Clinics in Shoulder and Elbow
    • /
    • 제20권1호
    • /
    • pp.46-48
    • /
    • 2017
  • There are many methods of making cement spacer in patients who require a two-staged operation for humeral head osteomyelitis. However, limitation of motion after the first surgery-due to inadequate size and insufficient intra-articular space for second surgery-remain to be an issue. To mitigate this issue, we made a cement spacer with the same size and shape of the patient humeral head. Four patients with humeral head osteomyelitis were enrolled in this study. To make the cement spacer, we used the Mimics program, and designed the molding box by a reverse engineering technique. We evaluated the range of motion and pain using a Constant score. The mean abduction was $50^{\circ}$($40^{\circ}-60^{\circ}$), forward flexion was $50^{\circ}$ ($30^{\circ}-70^{\circ}$), and average Constant score was 47.75 (44-52). Three-dimensional printed molding technique is one of the effective methods for humeral head osteomyelitis allowing for daily activities prior to the second surgery.

비스듬히 던진 물체의 공기저항을 고려한 재귀 최소 자승법 기반 실시간 포물선 운동 궤적 추정 (Real-time Projectile Motion Trajectory Estimation Considering Air Resistance of Obliquely Thrown Object Using Recursive Least Squares Estimation)

  • 정상윤;좌동경
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.427-432
    • /
    • 2018
  • This paper uses a recursive least squares method to estimate the projectile motion trajectory of an object in real time. The equations of motion of the object are obtained considering the air resistance which occurs in the actual experiment environment. Because these equations consider air resistance, parameter estimation of nonlinear terms is required. However, nonlinear recursive least squares estimation is not suitable for estimating trajectory of projectile in that it requires a lot of computation time. Therefore, parameter estimation for real-time trajectory prediction is performed by recursive least square estimation after using Taylor series expansion to approximate nonlinear terms to polynomials. The proposed method is verified through experiments by using VICON Bonita motion capture system which can get three dimensional coordinates of projectile. The results indicate that proposed method is more accurate than linear Kalman filter method based on the equations of motion of projectile that does not consider air resistance.

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발 (Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit)

  • 조용준;오춘석;유영기
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

평판형 전개판의 3차원 운동 모델링 (Modeling of flat otter boards motion in three dimensional space)

  • 최무열;이춘우;이건호
    • 수산해양기술연구
    • /
    • 제43권1호
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

주니어 역도 선수 인상 종목의 Dead-lift 동작 시 스탠스유형에 따른 운동학적 변인 비교분석 (The Comparative Analysis on the Kinematic Variables according to the Types of Stance in the Dead-lift of Snatch Events of Junior Weight Lifters)

  • 정남주;김재필
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.99-107
    • /
    • 2008
  • 본 연구는 주니어 역도 선수 인상 종목의 주요 국면인 Deadlift 동작 시 스탠스 유형에 따른 운동학적 변인을 비교 분석하여 선수들의 경기력 향상과 훈련 시 기초자료를 제공하기 위하여 실시하였다. 본 연구에서 8자형은 11자형에 비해 바벨과 신체의 발란스에 적합한 소요시간을 보였고 바벨을 끌어올리는데 요구되는 인체중심의 전 후, 좌 우이동범위를 작게하여 인체의 안정성을 유도하였다. 또한 8자형의 인체중심속도와 바벨의 속도는 E3(바가 고관절에 도달할 때)를 지나면서 상방향으로 바를 끌어올리는데 유리한 조건의 큰 속도를 발휘하는 것으로 나타났다. 그리고 몸통과 고관절 무릎, 발목 및 스탠스 각도에서 8자형은 11자형에 비해 인체의 안정성을 유지하면서 순간적인 힘을 발휘하는데 유리한 조건을 갖추고 있는 것으로 나타났다.