Browse > Article
http://dx.doi.org/10.3796/KSFT.2007.43.1.049

Modeling of flat otter boards motion in three dimensional space  

Choe, Moo-Youl (Department of Fisheries Physics, Graduate school, Pukyong National University)
Lee, Chun-Woo (Division of Marine Production System Management, Pukyong National University)
Lee, Gun-Ho (Department of Fisheries Physics, Graduate school, Pukyong National University)
Publication Information
Journal of the Korean Society of Fisheries and Ocean Technology / v.43, no.1, 2007 , pp. 49-61 More about this Journal
Abstract
Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.
Keywords
Otter boards; 6DOF; Rigid body motion; Numerical simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, B.S., Y.D. Kim, H.C. Bang, M.J. Tak and S.K. Hong, 2004. Flight dynamics and control. Kyugn-Moon press, Korea, pp. 319
2 Ko, K.S., B.G. Kwon and K.D. Ro, 1991. Computational fluid analysis for the otter boards - 2. Efficiency analysis for the otter boards of various types -. Bull. Korean Fish. Tech. Soc., 27(3), 163 - 169
3 Morton, G., and G.R. Hagen, 1967. Standard equations of motion for submarine simulation. Technical report DTMB 2510, David Talylor Research Center, pp. 27
4 Park, K.H., J.H. Lee, B.S. Hyun and J.H. Bae, 2001. The study on the hydrodynamic characteristics of the single slot cambered otter board. Bull. Korean Soc. Fish. Tech., 37(1), 1-8   과학기술학회마을
5 Lee, C.W., S. Igarashi, T. Mikami, and N. Yamashita, 1990. A mechanical analysis of hook separation. Nippon Suisan Gakkaishi, 56(11), 1797-1802   DOI
6 Deng, Z., M.C. Richmond, C.S. Simmons and T.J. Carlson, 2004. Six-degree-of-freedom sensor fish design: governing equations and motion modeling. Pacific Northwest National Laboratory, Richland, Washington, pp. 40
7 Jiaming, W. and Allen T.C., 2000. A hydrodynamic model of a two - part underwater towed system. Ocean Engineering 27, 455-472   DOI   ScienceOn
8 Ko, K.S., B.G. Kwon and K.D. Ro, 1990. Computational fluid analysis for the otter boards - 1. Pattern of fluid flow besides otter board - . Bull. Korean Fish. Tech. Soc., 26(4), 333 - 340   과학기술학회마을
9 Lee, C.W., J.H. Lee, B.J. Cha, H.Y. Kim and J.H. Lee, 2005. Physical modeling for underwater flexible systems dynamic simulation. Ocean Engineering 32, 331-347   DOI   ScienceOn
10 Park, C.D., 1994. A study on the fluid characteristics of otter boards. Ph.D. thesis, Graduate school of Tokyo university of marine science and technology, Japan. pp.154
11 Park, K.H., J.H. Lee, B.S. Hyun, Y.H. Ro and J.H. Bae, 2002. Study on the measurements of flow field around cambered otter board using particle image velocimetry. Bull. Korean Soc. Fish. Tech., 38(1), 43 - 57   과학기술학회마을   DOI   ScienceOn
12 Timothy, P., 2001. Verification of a six - degree of freedom simulation model for the REMUS autonomous underwater vehicle. Master's thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, pp. 128
13 Crewe, P.R., 1964. Some of the general engineering principles of trawl gear design. Modem fishing gear of the world II, Fishing New Ltd, pp. 165 - 180
14 Kwon, B.G. 1993. A study on the hydrodynamic characteristics of otter board. Ph.D. thesis, National Fisheries university of Pusan, Korea. pp. 105
15 Lee, B.G., 1989. Fishing methods of modern Trawl. TaeHwa Press, pp. 116 - 145