• 제목/요약/키워드: three dimensional motion

검색결과 1,015건 처리시간 0.028초

The elbow is the load-bearing joint during arm swing

  • Bokku Kang;Gu-Hee Jung;Erica Kholinne;In-Ho Jeon;Jae-Man Kwak
    • Clinics in Shoulder and Elbow
    • /
    • 제26권2호
    • /
    • pp.126-130
    • /
    • 2023
  • Background: Arm swing plays a role in gait by accommodating forward movement through trunk balance. This study evaluates the biomechanical characteristics of arm swing during gait. Methods: The study performed computational musculoskeletal modeling based on motion tracking in 15 participants without musculoskeletal or gait disorder. A three-dimensional (3D) motion tracking system using three Azure Kinect (Microsoft) modules was used to obtain information in the 3D location of shoulder and elbow joints. Computational modeling using AnyBody Modeling System was performed to calculate the joint moment and range of motion (ROM) during arm swing. Results: Mean ROM of the dominant elbow was 29.7°±10.2° and 14.2°±3.2° in flexion-extension and pronation-supination, respectively. Mean joint moment of the dominant elbow was 56.4±12.7 Nm, 25.6±5.2 Nm, and 19.8±4.6 Nm in flexion-extension, rotation, and abduction-adduction, respectively. Conclusions: The elbow bears the load created by gravity and muscle contracture in dynamic arm swing movement.

A study on the modeling of a hexacopter

  • Le, Dang-Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1023-1030
    • /
    • 2015
  • The purpose of this paper is to present the basic mathematical modeling of a hexacopter, which could be used to develop proper methods for stabilization and trajectory control. A hexacopter consists of six rotors with three pairs of counter-rotating fixed-pitch blades. This mechanism is an under-actuated, dynamically unstable, six-degrees-of-freedom system. The whole motion of this object consists of translational and rotational motion in three dimensions, where the translational motion is created by changing the direction and magnitude of the upward propeller thrust. The hexacopter is controlled by adjusting the angular velocities of the rotors, which are spun by electric motors. It is assumed to be a rigid body; thus, the differential equation of the hexacopter dynamics can be derived from the Newton-Euler equation. The Euler-angle parametrization of the three-dimensional rotations contains singular points in the coordinate space that can cause failure of both the dynamical model and control. In order to avoid singularities, the rotations of the hexacopter are parametrized in terms of quaternions. This choice has been made considering the linearity of the quaternion formulation and their stability and efficiency. Further, control simulation of a hexacopter applying cascaded-PID control is also presented in this paper.

철봉 어깨 틀어 휘돌아 다시 잡기(el-grip swing with one turn to el-grip) 동작의 운동학적 분석 (Kinematical Analysis of El-grip swing with 1turn to el-grip in horizontal bar)

  • 김재필
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.51-62
    • /
    • 2003
  • This study was attempted to kinematical characteristics of the El-grip swing with 1turn to el-grip in elite horizontal bar for the purpose of improving performance. The subjects were three males who were 2002 Busan Asian Games in men's team. The three dimensional motion analysis with DLT method was executed using three video cameras of analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that gymnastics and coaches have the effective informations, and the following conclusion had resulted. 1. In case of release, It is impotant to make fast horizontal velocity of CM, high vertical position of CM, large hip and shoulder angle. Also It should be performed release motion of trunk rotation angle(+). 2. During LHR the action should be made at higher position than the CM and the shoulder joint is moving within $127{\pm}16.82$. It is important to make large lunk rotation angle. 3. During Hop, the RHR motion should be done in high position with short time and fast twisting action and to reduce the vertical speed is important.

평행봉 Tippelt 동작의 기술 분석 (Kinematical Analysis of Tippelt Motion in Parallel Bars)

  • 백훈식;김민수;문병용;백진호;윤창선
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.

모션 데이터에 Isomap을 사용한 3차원 아바타의 실시간 표정 제어 (Realtime Facial Expression Control of 3D Avatar by Isomap of Motion Data)

  • 김성호
    • 한국콘텐츠학회논문지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2007
  • 본 논문은 Isomap 알고리즘을 사용하여 다량의 고차원 얼굴 모션 데이터를 2차원 평면에 분포시키는 방법론과, 사용자가 이 공간을 항해하면서 원하는 표정들을 선택함으로써 실시간적으로 얼굴 표정 제어가 가능한 사용자 인터페이스 기법에 대하여 기술한다. Isomap 알고리즘은 세 단계의 과정으로 처리된다. 첫째, 각 표정 데이터의 인접표정을 정의하고, 둘째, 각 표정들 사이의 다양체 거리를 계산하여 표정공간을 구성한다. 표정공간의 생성은 임의의 두 표정간의 최단거리(다양체 거리)의 결정으로 귀결되고, 이를 위해 플로이드 알고리즘을 이용한다. 셋째, 다차원 표정공간을 가시화하기 위해서 다차원 스케일링을 사용하며, 2차원 평면에 투영시킨다. 인접표정을 정의하기 위한 최소 인접거리는 피어슨의 상관계수를 이용한다. 3차원 아바타의 얼굴 표정 제어는 사용자 인터페이스를 사용하여 2차원 공간을 항해하면서 실시간으로 제어한다.

Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어 (Fuzzy control of a robot manipulator in Cartesian space)

  • 곽희성;강철구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

2D H.264 동영상의 3D 입체 변환 (3D Conversion of 2D H.264 Video)

  • 홍호기;백윤기;이승현;김동욱;유지상
    • 한국통신학회논문지
    • /
    • 제31권12C호
    • /
    • pp.1208-1215
    • /
    • 2006
  • 본 논문에서는 스테레오 카메라로 입체 동영상을 얻는 방법이 아닌 H.264로 압축된 2D 동영상으로부터 복호화 과정에서 얻게 되는 움직임 정보를 이용하여 효과적인 3D 입체 동영상을 생성하는 기법을 제안한다. MPEG 기반의 동영상에서 각 프레임의 움직임 정보는 복호화단에서 얻게 되는 움직임 벡터로 분석이 가능하며 H.264에서는 움직임 예측을 위하여 다양한 크기의 블록을 이용하기 때문에 더 정확한 움직임 벡터와 정보를 얻을 수 있다. 본 논문에서 제안한 2D/3D 변환기법에서는 장면 전환점 검출, delay factor, 운동 방향, 운동 형태 등을 이용하여 좌영상과 우영상을 생성한다. 이때 동일한 컷(cut)내의 프레임들 간의 운동 형태와 운동 방향은 높은 상관도를 가지게 된다. 실험 결과를 통해서 제안된 기법을 이용할 경우 안정된 동영상 입체 변환이 가능함을 알 수 있다.

철봉 리발코(Rybalko) 동작의 운동학적 분석 (The Kinematic Analysis of the Rybalko Motion on the Horizontal Bar)

  • 이병원
    • 한국운동역학회지
    • /
    • 제16권1호
    • /
    • pp.109-117
    • /
    • 2006
  • The purpose of this study was done in order to investigate the Kinematical variables of the Rybalko motion on the Horizontal bar using the 3-dimensional cinematographic method. For this study, three excellent athletes take part in a 2003 Daegue universid game were chosen. The subject,s Rybalko motion was filmed with S-VHS camera at the speed of 60 fields per second and digitized the each fields. And the Kwon3D 3.1 version program was employed to obtain 3-dimensional data. As a result of this study. 1. A total time spent for performing Rybalko skill was Mean $2.52{\pm}0.13sec$. From starting down swing to releasing right hand the Mean $0.84{\pm}0.24sec$ was taken. 2. In the event 3 of Rybalko motion, that is, the moment which the right-hand is released on the bar, the center of mass must is employed at the position above the horizontal line of bar. In this research, the average vertical displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 3. In the event 5, that is, the moment which the right-hand is catched again on the bar, the center of mass is employed at the position before the vertical line of bar. In this research, the average horizontal displacement(z axe) of center of mass shows $47.87{\pm}3.14cm$. 4. It has been seen that, at the moment of release of right-hand, lateral variation of center of mass is 13.395cm, vertical variation of center of mass is 7.41cm Thus, it is concluded that lateral variation of center of mass should be reduced for high grade to be acquired. 5. It has been founded that high speed of down swing influences speed of up swing, and that, in the motion of twist, the horizontal speed is little changed.

3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법 (Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation)

  • 박준형;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.537-542
    • /
    • 2011
  • 거울 신경 세포는 동물이 어떤 동작을 할 때와 그 동물이 다른 동물의 동일한 동작을 하는 것을 관찰 할 때, 똑같은 세포 발화를 하는 신경세포이다. 본 논문에서는 거울 신경 세포의 발화 원리를 이용하여 비슷한 방법으로 보이지 않는 부분에 대한 객체의 움직임을 추적하는 방법을 3차원 재구축 방법을 통해 제안한다. 거울 신경 세포 시스템과 같은 발화 원리를 통해 의도 인지 시스템을 구축하기 위해, 스테레오 카메라를 통해 획득한 두 개의 이미지 데이터를 통해 깊이 정보를 계산하여 3차원으로 재구축한다. 3차원 재구축을 통해 만들어진 이미지 데이터를 옵티컬 플로우를 사용하여 3차원 이미지에서 객체의 움직임 방향을 추정한다. Estimation 알고리즘인 칼만 필터를 사용하여 객체의 움직임 추정을 잡음에 강인하게 한다. 객체의 움직임 추정을 통하여 객체의 움직임에 따라 구축된 이미지 데이터를 히스토리화 하여 데이터를 저장한다. 객체의 일부분 혹은 전체가 다른 물체로 인해 가려져 스테레오 카메라 시야에서 사라졌을 때, 과거에 저장된 히스토리로 부터 데이터를 가져와 가려진 부분에 대한 객체의 원래의 모습을 복원한다. 이 복원을 통하여 움직임 추정을 한다.