• Title/Summary/Keyword: third party damage

Search Result 55, Processing Time 0.032 seconds

The Development of Third-Party Damage Monitoring System for Natural Gas Pipeline Using Sound Propagation Model (음향 전파 모델을 이용한 천연가스 배관용 타공사 모니터링 시스템의 개발)

  • Shin, Seung-Mok;Suh, Jin-Ho;Yu, Hui Ryong;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.905-910
    • /
    • 2003
  • In this paper, we develop real-time monitoring system to detect third-party damage on natural gas pipeline by using sound propagation model. Since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed real-time monitoring system can execute a significant role in reducing many third-party damage incidents. The developed system is composed of three steps as follows: i) DSP based system, ii) wireless communication system, iii) the calculation and monitoring software to detect the position of third-party damage using the propagation speed of acoustic wave. Furthermore, the developed system was set at practical offshore pipeline between two islands in Korea and it has been operating in real time.

  • PDF

Study on real time monitoring to detect third party damage using vibration signal (진동신호를 이용한 타공사 조기 감시 기술 연구( I ))

  • Cho S.H.;Jeon K.S.;Park K.W.;Cho Y.B.;Li S.Y.;Kyo Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.1-8
    • /
    • 2000
  • Third party damage is one of the causes intrimiting the safety of a buried pipelines and it is very important to detect third party damage on pipelines as soon as possible. The purpose of this study is whether third-party damage can be detected by accelerometer sensor and how far the third-party damage signal can propagate. And a pilot experiment was carried out in order to find third-party damage location. As a result, the detected signal's spectum is high frequency at short distances, as the distance is far, the signals in high frequency range are attenuated and those in low frequency range remain. It was also proved that third-party damage within 5.3km distance can be detected by monitoring vibration signals.

  • PDF

Development of Third-Party Damage Monitoring System for Natural Gas Pipeline

  • Shin, Seung-Mok;Suh, Jin-Ho;Im, Jae-Sung;Kim, Sang-Bong;Yoo, Hui-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1423-1430
    • /
    • 2003
  • In this paper, we develop a real time monitoring system to detect third-party damage on natural gas pipeline. When the damage due to third-party incidents causes an immediate rupture, the developed on-line monitoring system can help reducing the sequences of event at once. Moreover, since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed on-line monitoring system can execute a significant role in reducing many third-party damage incidents. Also, when the damage is given at a point on natural gas pipeline, the acoustic wave is propagated very fast about 421.3 m/s. Therefore, the data processing time should be very short in order to detect precisely the impact position. Generally, the pipeline is laid under ground or sea and the length is very long. So a wireless data communication method is recommendable and the sensing positions are limited by laid circumstance and setting cost of sensors. The calculation and monitoring software is developed by an algorithm using the propagation speed of acoustic wave and data base system based on wireless communication and DSP systems. The developed monitoring system is examined by field testing at Balan pilot plant, KOGAS being done in order to demonstrate its validity through reactive detection of third-party contact with pipelines. Furthermore, the development system was set at the practical pipelines such as an offshore pipeline between two islands Yul-Do and Youngjong-Do, and a land branch of Pyoungtaek, Korea and it has been operating in real time.

Development of Fiber Optic Accelerometer for Third-Party Damage Detection (타공사 감시를 위한 광섬유 가속도계의 개발)

  • Park, Ho-Rim;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1551-1558
    • /
    • 2001
  • Recently, a number of underground pipelines have been drastically increased. The integrity of these buried pipelines, especially gas transmitting pipelines, is of importance due to an explosive characteristic of natural gas. The third party damage is known as one of the most critical factor which causes fatal accidents. For this reason, a number of systems detecting third party damage are under development. The major concern in the development of third party damage detection system is to transmit vibration signals out of accelerometer to signal conditioner and data acquisition system without any interference caused by noise. The objective of this paper is to develope a fiber optic accelerometer applicable to third party damage detection system. A fiber optic accelerometer was developed by use of combining principles of one degree of freedom vibration model and an extrinsic Fabry-Perot interferometer. The developed fiber optic accelerometer was designed to perform with a sensitivity of 0.06mVg, a frequency range of less than 6kHz and an amplitude range of -200g to 200g. The developed, accelerometer was compared with a piezoelectric accelerometer and calibrated. In order to verify the developed accelerometer, the field experiment was performed. From the field experiment, vibration signals and the location of impact were successfully detected. The developed accelerometer is expected to be used for the third party damage detection system which requires long distance transmission of signals.

Some Consideration on the Study of ICAO for the Rome Convention Amendment and the Necessity of Domestic Legislation (로마조약의 개정과 국내입법의 필요성에 관한 소고)

  • Kim, Sun-Ihee;Kwon, Min-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.1
    • /
    • pp.3-32
    • /
    • 2008
  • In proportion to recent developments in aviation technology and growth of the air transport market, the risk of damages to third parties caused by aircrafts and the likelihood of unlawful interference on an aircraft in flight has grown larger. The war risk insurance market was paralyzed by the 9/11 terror event. And if another event on the scale of 9/11 occurs, compensations for third party damages will be impossible. Recognizing the need to modernize the existing legal framework and the absence of a globally accepted authority that deals with third party liability and compensation for catastrophic damage caused by acts of unlawful interference, the ICAO and various countries have discussed a liability and compensation system that can protect both third party victims and the aviation industry for the 7 years. In conclusion, in order to provide adequate protection for victims and the appropriate protection for air transport systems including air carriers, work on modernizing the Rome Convention should be continued and the new Convention should be finalized in the near future. Korea has not ratified the relevant international treaties, i.e. Rome Convention 1933, 1952 and 1978, and has no local laws which regulate the damage caused by aircraft to third parties on land. Consequently, it has to depend on the domestic civil tort laws. Most of the advanced countries in aviation such as the United States, England, Germany, France and even China, have incorporated the International Conventions to their national air law and governed carriers third party liability within their jurisdiction. The Ministry of Justice organized the Special Enactment Committee for Air Transport chapter under Commercial Law. The Air Transport chapter, which currently includes third party liability, is in the process of instituting new legislation. In conclusion, to settle such problems through local law, it is necessary to enact as soon as possible domestic legislation on the civil liability of the air carrier which has been connected with third party liability and aviation insurance.

  • PDF

Development of Real Time Monitoring System for third party damage Detection Using Wireless Data Communicating (무선데이타 통신을 이용한 실시간 타공사 감시 시스템 개발)

  • Park S.S.;Cho S.H.;Yoo H.R.;Kim D.K.;Jeon K.S.;Park D.J.;Koo S.J.;Rho Y.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.59-64
    • /
    • 2000
  • The real time monitoring system is developed to detect third party damage imposed on natural gas pipeline and to estimate a damage position in section of pipeline in need of monitoring the third party damage. The monitoring system uses wireless data communication in order to build up data communication network. The availability of monitoring system was evaluated through full scale field damage test at Masan's submarine gas pipeline. It was turned out that the estimation error was one percentage of the propagation speed of damage sound in the gas pipeline.

  • PDF

An Experimental Study on the Mechanical Impact (Third Party Damage) of High Pressure Gas Pipe (고압가스배관의 기계적 충격(타공사)에 대한 실험적 연구)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-he
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2017
  • One of the main causes of gas pipeline accidents is mechanical impact(third party damage). The majority of high pressure gas pipelines buried in major domestic industrial complexes are old pipes which have being operated over 20 years. Therefore, if an accident occurs, there will be a full scale accident because there is no additional inspection and reinforcement time. In this study, the defects on the piping during the mechanical impact were studied through the third party damage(excavation) experiments. Experiments were carried out using the 21 ton excavator which is operated in the actual excavation work and the type of pipe to be struck are ASTM A106 Grade.B and ASTM A53 Grade.B. As a result, when the bucket used during excavator operation is a sawtooth bucket, the defect is more bigger. And the smaller the diameter of the pipe, the smaller the depth and length of the defect. Also, it was confirmed that the impact height had no effect on the defects on the buried pipe, during the excavation work.

A Study on the Revised Draft of Rome Convention on Compensation for Damage Caused by Aircraft to Third Parties - With Respect to the Draft Unlawful Interference Compensation Convention and the Draft General Risks Convention - (항공기에 의하여 발생된 제3자 손해배상에 관한 로마협약 개정안에 대한 고찰 - 불법방해배상협약안과 일반위험협약안을 중심으로 -)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.2
    • /
    • pp.27-51
    • /
    • 2007
  • The cumulative result of the work by the ICAO Secretariat, the Secretariat Study Group and the Council Special Group on the Modernization of the Rome Convention of 1952 are two draft Conventions, namely: "Draft Convention on Compensation for Damage Caused by Aircraft to Third Parties, in case of Unlawful Interference", and "Draft Convention on Compensation for Damage Caused by Aircraft to Third Parties" The core provisions of the former draft Convention are as follows: The liability of the operator is strict, that is, without the necessity of proof of fault. It would be liable for damage sustained by third parties on condition only that the damage was caused by an aircraft in flight(Article 3). However, such liability is caped based on the weight of the aircraft(Article 4). It is envisaged to create an independent organization called the Supplementary Compensation Mechanism, with the principle purpose to pay compensation to persons suffering damage in the territory of a State Party, and to provide financial support(Article 8). Compensation shall be paid by the SCM to the extent that the total amount of damages exceeds the Article 4 limits(Article 19). The main issues on the farmer draft Convention are relating to breaking away from Montreal Convention 1999, no limits on individual claims but a global limitation on air carrier liability, insurance coverage, cap of operators' strict liability, and Supplementary Compensation Mechanism. The core provisions of the latter draft Convention are as follows: the liability of the operator is strict, up to a certain threshold tentatively set at 250,000 to 500,000 SDRs. Beyond that, the operator is liable for all damages unless it proves that such damage were not due to its negligence or that the damages were solely due to the negligence of another person(Article 3). The provisions relating to the SCM and compensation thereunder do not operate under this Convention, as the operator is potentially for the full amount of damages caused. The main issues on the latter draft Convention are relating to liability limit of operator, and definition of general risks. In conclusion, we urge ICAO to move forward expeditiously on the draft Convention to establish a third party liability and compensation system that can stand ready to protect both third party victims and the aviation industry before another 9/11-scale event occurs.

  • PDF

Deciding of the Priority Elements for Choosing Third-Party Logistics Provider in International Logistics (국제물류분야의 제3자 물류업체 선정을 위한 우선순위 요소 결정)

  • Ha, Chang-Seung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.5
    • /
    • pp.1214-1223
    • /
    • 2013
  • The purpose of this work is to analyze the factors, criteria and importance that shippers in the international logistics industry take into account in choosing third-party logistics, and thereby to propose the directions of the areas and functions that third-party logistics will need to enhance on the basis of Analytic Hierarchy Process (AHP) methodology. To do that, this work collected and analyzed materials about changing environments of logistic industry and previous studies, and especially conducted a questionnaire survey on the factors to choose third-party logistics with the study subjects of shippers in the international logistics industry. To draw attribute factors, this work repeatedly chose and classified candidate factors through Delphi technique on the basis of the data of previous studies. The analysis results are presented as follows: regarding pairwise comparison between logistic cost and logistic service in relation of conflict, logistic service was recognized to be more important than logistic cost; regarding pairwise comparison between corporate capability and logistic cost, logistic cost was recognized to be more important; and regarding comprehensive evaluation, logistic service factors, including accuracy of order handling, service reliability, freight damage and compensation, a degree of fulfillment of promise, quality of transportation, and problem-solving ability, were found to be in high position.

A Study on Bridge Construction Risk Analysis for Third-Party Damage (교량공사 제3자 피해 손실에 의한 리스크 분석 연구)

  • Ahn, Sung-Jin;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • The recent bridge construction projects demand thorough and systematic safety and risk management, due to the increase of risk factors following the introduction of new and complex construction methods and technologies. Among many types of damages that can occur in bridge construction projects, the damages to third parties who are not directly related to the existing property of the contractor construction project can also bring about critical loss in the project in order to compensate the damages. Therefore, risks that could be caused by the loss occurred to indemnify the third party damages should be clearly analyzed, although there are not subsequent amount of studies focusing on the issue. Based on the past record of insurance payment from domestic insurance companies for bridge construction projects, this study aimed to analyze the risk factors of bridge construction for loss caused to compensate the third-party damages happened in actual bridge construction projects and to develop a quantified and numerical predictive loss model. In order to develop the model, the loss ratio was selected as the dependent variable; and among many analyzed independent variables, the superstructure, foundation, flood, and ranking of contractors were the four significant risk factor variables that affect the loss ratio. The results produced can be used as an essential guidance for balanced risk assessment, supplementing the existing analysis on material losses in bridge construction projects by taking into account the third-party damage and losses.