• Title/Summary/Keyword: thin-sample

Search Result 711, Processing Time 0.028 seconds

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

Electronic and Electrical Properties of Transparent Conducting Nickel Oxide Thin Films

  • Lee, Kang-Il;Kim, Beom-Sik;Kim, Ju-Hwan;Park, Soo-Jeong;Denny, Yus Rama;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.226-226
    • /
    • 2012
  • The electronic and electrical properties of nickel oxide (NiO) thin films were investigated by reflection electron energy loss spectroscopy (REELS), x-ray photoelectron spectroscopy (XPS), and Hall Effect measurements. REELS spectra revealed that the band gap of the NiO thin film was increased from 3.50 eV to 4.02 eV after annealing the sample at $800^{\circ}C$. Our XPS spectra showed that the amount of Ni2O3 decreased after annealing. The Hall Effect results showed that the doping type of the sample changed from n type to p type after annealing. The resistivity decreased drastically from $4.6{\times}10^3$ to $3.5{\times}10^{-2}$ ${\Omega}{\cdot}cm$. The mobility of NiO thin films was changed form $3.29{\times}10^3$ to $3.09{\times}10^5cm^2/V{\cdot}s$. Our results showed that the annealing temperature plays a crucial role in increasing the carrier concentration and the mobility which leads to lowering resistivity of NiO thin films.

  • PDF

Characteristics of AC Power Electroluminescent Device with the Double Dielectric Layers of Thin and Thick Barium Titanate Films ($BaTiO_3$ 박막과 후막의 2중 유전체로 구서된 AC 분산형 ELD의 특성)

  • Lee, Ju-Hyeon;Chae, Sang-Hoom;Bhattarai, B.B.;Kim, Hak-Soo;Park, Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.679-687
    • /
    • 2001
  • It is known that amorphous BaTiO$_3$ thin films have good insulating properties[1][2]. In this investigation, amorphous BaTiO$_3$ thin films were deposited by rf magnetron sputtering on thick BaTiO$_3$ films of AC powder EL devices which were fabricated by screen-printing. The electrical and optical properties of the EL devices were then investigated. Adding amorphous BaTiO$_3$ thin film, it showed that leakage current density was decreased. Especially, leakage current density was decreased more with he sample of 0.5-hour deposition than the sample of 4-hours deposition. This result led to the improvement of luminous efficiency by 11%. It could be concluded that proper amorphous BaTiO$_3$ thin film deposition improved the surface property of dielectric layer.

  • PDF

The Effect of Magnetic Field Direction on the Imaging Quality of Scanning Electron Microscope

  • Ai, Libo;Bao, Shengxiang;Hu, Yongda;Wang, Xueke;Luo, Chuan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • The significant reduction of the image quality caused by the magnetic field of samples is a major problem affecting the application of SEM (scanning electron microscopy) in the analysis of electronic devices. The main reason for this is that the electron trajectory is deflected by the Lorentz force. The usual solution to this problem is degaussing the sample at high temperatures. However, due to the poor heat resistance of some electronic components, it is imperative to find a method that can reduce the impact of magnetic field on the image quality and is straightforward and easy to operate without destroying the sample. In this paper, the influence of different magnetic field directions on the imaging quality was discussed by combining the experiment and software simulation. The principle of the method was studied, and the best observation direction was obtained.

Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System (Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정)

  • Han, Chang-Suk;Kwon, Yong-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

DRYING CHARACTERISTINCS OF THIN-LAYERS OF WHEAT AND BARLEY AT NEAR-AMBIENT TEMPERATURE

  • Sun, Da-Wen;J.J.Woods
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.896-905
    • /
    • 1993
  • Thin-layers of wheat and barley are dried at near-ambient temperatures(3.5$^{\circ}C$ -5$0^{\circ}C$) in order to obtain the intrinsic drying data. The well established apparatus was modified to enable it to record all the sample weight data in still air by using a purpose -built automatically controlled sliding valve. The air could be diverted in less than 0.5seconds and a 7 second period was required to attain a steady weight reading. With this apparatus, very smooth drying curves were obtained. The data of sample weight , drying temperature and dew point temperature wee recorded continuously . The drying process was terminated when the moisture content change in 24 hours was less than 0.004 d.b. This was achieved by drying a sample for about a week . The final points were recorded as the dynamic equilibrium moisture content(EMC). The drying data were than fitted to the exponential Newton model and the dynamic EMC data were fitted to the Modified-Chung-Pfost Model . All the fitted parameters are given and comparison is made with previous published data. The comparisons who that the current drying constants are lower than the previous data, the dynamic EMC data obtained for wheat and barely agree with the previous data. The results show that to obtain the drying constant in the exponential Newton model, adequate drying time is necessary.

  • PDF

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

열처리 조건에 따른 Rubrene 박막의 결정 특성 변화 연구

  • Yun, Yeong-Un;Kim, Song-Hui;Lee, Han-Ju;Kim, Tae-Dong;Lee, Gi-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.124-124
    • /
    • 2009
  • We observed the changes of crystal structure of Rubrene (5,6,11,12-tetraphenylnaphthacene) polycrystal thin films at various in situ substrate temperature and process by scanning electron microscope(SEM), x-ray diffraction (XRD) and near-field microwave microprobe (NFMM). Amorphous rubrene thin film was initially obtained on 200 nm thick $SiO_2/Si$ substrate at 35 $^{\circ}C$ in a vacuum evaporation but in situ long time postannealing at the temperature 80 $^{\circ}C$ transformed the amorphous phase into crystalline. Four heating conditions are followed : (a) preheating (b) annealing (c) preheating, annealing (d) preheating, cooling(35 $^{\circ}C$), annealing. We have obtained the largest polycrystal disk in sample (c). But the highest crytallity and conductivity of the rubrene thin films were obtained in sample (d).

  • PDF

Nanoscopic Understanding of Phase Transition of Epitaxial VO2 Thin Films (에피택셜 VO2 박막의 상전이에 대한 미시적 이해)

  • Kim, Dong-Wook;Sohn, Ahrum
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • We investigated configuration of metallic and insulating domains in $VO_2$ thin films, while spanning metal-insulator phase transition. Kelvin probe force microscopy, of which spatial resolution is less than 100 nm, enables us to measure local work function (WF) at the sample surface. The WF of $VO_2$ thin films decreased (increased) as increasing (decreasing) the sample temperature, during the phase transition. The higher and lower WF regions corresponded to the insulating and metallic domains, respectively. The metallic fraction, estimated from the WF maps, well explained the temperature-dependent resistivity based on the percolation model. The WF mapping also showed us how the structural defects affected the phase transition behaviors.