Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.3.141

Nanoscopic Understanding of Phase Transition of Epitaxial VO2 Thin Films  

Kim, Dong-Wook (Department of Physics, Ewha Womans University)
Sohn, Ahrum (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.3, 2017 , pp. 141-146 More about this Journal
Abstract
We investigated configuration of metallic and insulating domains in $VO_2$ thin films, while spanning metal-insulator phase transition. Kelvin probe force microscopy, of which spatial resolution is less than 100 nm, enables us to measure local work function (WF) at the sample surface. The WF of $VO_2$ thin films decreased (increased) as increasing (decreasing) the sample temperature, during the phase transition. The higher and lower WF regions corresponded to the insulating and metallic domains, respectively. The metallic fraction, estimated from the WF maps, well explained the temperature-dependent resistivity based on the percolation model. The WF mapping also showed us how the structural defects affected the phase transition behaviors.
Keywords
$VO_2$; Phase transition; Work function; Kelvin probe microscopy; Percolation; Structural defects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sohn, T. Kanki, H. Tanaka, and D.-W. Kim, Appl. Phys. Lett. 107 (2015) 171603.   DOI
2 H. Kim, N. Y. Chan, J.-j. Dai, and D.-W. Kim, Sci. Rep. 5 (2015) 8531.   DOI
3 Y. Cho et al. A. Sohn, S. Kim, M. G. Hahm, D. -H. Kim, B. Cho, and D.-W. Kim, ACS Appl. Mater. & Interfaces 8 (2016) 21612-21617.   DOI
4 Y. J. Jang, E. Kim, S. Ahn, K. Chung, J. Kim, H. Kim, H. Wang, J. Lee, D.-W. Kim, and D. H. Kim, J. Phys. Chem. Lett. 8 (2017) 364-369.   DOI
5 Y. Cho, B. Cho , Y. Kim, J. Lee, E. Kim, T. T. T. Nguyen, J. H. Lee, S. Yoon, D.-H. Kim, J.-h. Choi, and D.-W. Kim*, ACS Appl. Mater. & Interfaces 9 (2017) 6314-6319.   DOI
6 H. Kim, S. Hong, and D.-W. Kim, Appl. Phys. Lett. 100 (2012) 022901.   DOI
7 T. Kanki, K. Kawatani, H. Takami, and H. Tanaka, Appl. Phys. Lett. 101 (2012) 243118.   DOI
8 K. Kawatani, H. Takami, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 100 (2012) 173112.   DOI
9 B. S. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M. E. Grass, S.-K. Mo, C. Park, Y. Y. Lee, and H. Ju, Phys. Rev. B 84 (2011) 113109.   DOI
10 A. Khodakov, B. Olthof, A. T. Bell, and E. Iglesia, J. Catal. 181 (1999) 205-216.   DOI
11 S. Lee, I. N. Ivanov, J. K. Keum, and H. N. Lee, Sci. Rep. 6 (2015) 19621.
12 L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, Nano Lett. 14 (2014) 4026-4043.
13 J. Wei, Z. Wang, W. Chen, and D. H. Cobden, Nat. Nanotech. 4 (2009) 420-424.   DOI
14 Y. J. Chang, J. S. Yang, Y. S. Kim, D. H. Kim, T. W. Noh, D.-W. Kim, E. Oh, B. Kahng, and J.-S. Chung, Phys. Rev. B 76 (2007) 075118.   DOI
15 M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318 (2007) 1750-1753.   DOI
16 H. Ueda, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 102 (2013) 153106.   DOI
17 A. Sohn, H. Kim, D.-W. Kim, C. Ko, S. Ramanathan, J. Park, G. Seo, B.-J. Kim, J.-H. Shin, and H.-T. Kim, Appl. Phys. Lett. 101 (2012) 191605.   DOI
18 A. Sohn, T. Kanki, K. Sakai, H. Tanaka, and D.-W. Kim, Sci. Rep. 5 (2015) 10417.   DOI