• Title/Summary/Keyword: thin-layer

Search Result 5,313, Processing Time 0.032 seconds

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

A Study for the Characteristics of multi-layer VOx Thin Films for Applying to IR Absorbing Layer (적외선 흡수층 응용을 위한 다층 산화 바나듐 박막의 특성에 관한 연구)

  • 박철우;문성욱;오명환;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.859-864
    • /
    • 2000
  • Recently IR detecting devices using MEMS have been actively studied. Microbolometer, one of these devices, detects the change of resistivity as the change of temperature of the device by absorbing IR, IR absorbing materials for microbolometer should have high TCR value and low noise characteristics which depends on resistivity. We fabricated multi-layer VOx thin films to improve the IR detectivity of uncooled IR devices and analyzed IR absorbing characteristics. We fabricated multi-layer VOx thin films by RF reactive sputtering method on SiNx substrate and changed characteristics using the different thickness of V and V$_2$O$\_$5/ thin films. Then we annealed them under 300$\^{C}$. The TCR (Temperature Coefficient of Resistance) measurement was carried out to estimate the IR detectivity of multi-layer VOx thin films. XRD (X-Ray Diffraction) analysis was carried out to estimate the IR detectivity of multi-layer VOx thin films. ZXRD (X-Ray Diffraction) analysis was used to find out phases and structures of V and V$_2$O$\_$5/ thin films. AES (Auger Electron Spectroscopy) analysis was used to find out composition of multi-layer VOx thin films before and after annealing. We obtained the optimum thickness range of V and V$_2$O$\_$5/ thin films from the result of AES analysis. We changed the thickness of V$_2$O$\_$5/ about 20 to 150 $\AA$ and thickness of V about 10 to 20 $\AA$. As the result of this, TCR value of multi-layer VOx thin films was about -2%/k and the resistivity was ∼1Ωcm.

  • PDF

Effect of Turbulence on the Plankton Behavior: Mechanical Perspective of a Process for Developing Thin Layers (난류가 플랑크톤의 거동에 미치는 영향: 역학적 관점에서 본 얇은 층의 형성과정)

  • Hwang, Jin Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.283-291
    • /
    • 2012
  • The present work reviews some mechanism explaining how thin layer can develop in the near coastal zone. The existence of thin layer was observed by physical research methods later than classical biological approaches. The Richardson number, which is a ratio between the stratification and shear stress is crucial factor determining the occurrence of thin layer. Micro-structure turbulence seems to affect the plankton behavior, in particular the encountering rate. Encountering rate affects significantly feeding, reproduction etc. and this fact was proved by the mechanical simulation methods. Recently the Gyrotaxis was introduced to explain how thin layer occurs in the mixing layer. Such physical approaches to explain ecological problem will be prominent methods for marine ecological research area.

Characterization of the Polymer-based Organic Light Emitting Diode having Inorganic Thin Film Passivation Layer (무기 박막형 보호층을 이용한 고분자 유기발광 다이오드의 특성 평가)

  • Kim, Hoon;Kim, Kwang-Ho;Kim, Jae-Kyung;Lee, Yun-Hi;Han, Jeong-In;Do, Lee-Mi;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.60-64
    • /
    • 2003
  • In this study, the inorganic thin-film passivation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam evaporation system, the various kinds of inorganic thin-films were deposited onto the organic layer and their interface properties between organic and inorganic layer were investigated. In this investigation, the MgO layer showed the most suitable properties, and based on this result, the time dependent emission properties were estimated for the OLED with and without passivation layer. In this experiment, we can see that the time-dependent emission properties of MgO passivated OLED had longer life-time compared to non-passivated OLED. Therefore, we can consider that the MgO thin film is one of the most suitable candidates for the thin-film passivation layer of OLED.

A Study of the Crystallographic Characteristic of ZnO Thin Film Grown on ZnO Buffer Layer (ZnO Buffer Layer에 의한 ZnO 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;이정석;신성권;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.214-217
    • /
    • 2003
  • In this study, we prepared ZnO thin film on $SiO_2$/Si substrate by FTS (Facing Targets Sputtering) apparatus which can reduce damage on the thin film because the bombardment of high-energy Particles such as ${\gamma}$-electron can be restrained. And, properties of thin filnl grown with ZnO buffer-layer which can be suppress initial growth layer was investigated. The crystalline and the c-axis preferred orientation of ZnO thin film was also investigated by XRD. As a result, we noticed that the ZnO thin film has a good crystallographic characteristic at thickness of ZnO buffer layer 10, 20 nm and working pressure 1 mTorr.

Current Voltage Characteristic of ZTO Thin Film by Negative Resistance (ZTO 박막의 부성저항에 의한 전류전압특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.29-31
    • /
    • 2019
  • The ZTO/p-Si thin film was produced and investigated for tunneling phenomena caused by the interface characteristics of the depletion layer. ZTO thin film was deposited and heat treated to produce barrier potentials by the depletion layer. The negative resistance characteristics were shown in the thin film of ZTO heat treated at $100^{\circ}C$, and the insulation properties were the best. Current decreased in the negative voltage direction by nonlinear show key characteristics, and current decreased in tunneling phenomenon by negative resistance in the positive voltage direction. Heat treated at $100^{\circ}C$, the ZTO thin film has increased barrier potential in the areas of the depletion layer and therefore the current has increased rapidly. The current has decreased again as we go beyond the depletion layer. Therefore, tunneling can be seen to make insulation better. In the ZTO thin film heat treated at $70^{\circ}C$ without tunneling, leakage current occurred as current increased at positive voltage. Therefore, tunneling effects by negative resistance were found to enhance insulation properties electrically.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • 박원효;김용진;금민종;가출현;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta$$\theta$$_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 2000e. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.t also seed layer.r.

  • PDF

Effects of ZnO Buffer Layer Thickness on the Crystallinity and Photoluminescence Properties of Rf Magnetron Sputter-deposited ZnO Thin Films (rf 마그네트런 스퍼터링법으로 Si 기판위에 증착한 ZnO 박막의 결정성과 photoluminescence 특성에 대한 Zn 완충층 두께의 영향)

  • Cho, Y.J.;Park, An-Na;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.445-448
    • /
    • 2006
  • Highly c-axis oriented ZnO thin films were grown on Si(100)substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL) and Atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by rf magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF