Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.4.283

Effect of Turbulence on the Plankton Behavior: Mechanical Perspective of a Process for Developing Thin Layers  

Hwang, Jin Hwan (Dongguk university-seoul, department of civil and environmental engineering)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.4, 2012 , pp. 283-291 More about this Journal
Abstract
The present work reviews some mechanism explaining how thin layer can develop in the near coastal zone. The existence of thin layer was observed by physical research methods later than classical biological approaches. The Richardson number, which is a ratio between the stratification and shear stress is crucial factor determining the occurrence of thin layer. Micro-structure turbulence seems to affect the plankton behavior, in particular the encountering rate. Encountering rate affects significantly feeding, reproduction etc. and this fact was proved by the mechanical simulation methods. Recently the Gyrotaxis was introduced to explain how thin layer occurs in the mixing layer. Such physical approaches to explain ecological problem will be prominent methods for marine ecological research area.
Keywords
Thin layer; Turbulence; Stratified flow; Plankton behavior; Biomechanics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamazaki, H., T.R. Osborn and K.D. Squires, 1991. Direct numerical simulation of plankton contact in turbulence flow. J. Plankt. Res. 13: 629-643.   DOI
2 Wang, Z. and L. Goodman, 2010. The evolution of a thin phytoplankton layer in strong turbulence, Continental Shelf Research 30: 104-118. DOI:10.1016/j.csr.2009.08.006.   DOI   ScienceOn
3 Yen J. and R. Strickler, 1996. Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicious?, Invertebr. Biol. 115: 191-205.   DOI   ScienceOn
4 Yen, J., M.J. Weissburg and M.H. Doall, 1998. The fluid physics of signal perseption by mate-tracking copepods, Philos. Trans. R. Soc. London Ser. B, 353: 787-804.   DOI   ScienceOn
5 Yund, P.O. and S.K. Meidel, 2003. Sea urchin spawning in benthic boundary layers: Are eggs fertilized before advecting awasy from females?, Limn. Oceanogr. 48: 795-801.   DOI
6 Zimenez, J., 1997. Oceanic turbulence at millimeter scales, Sci. Mar. 61: 47-56.
7 Ackerman, J.D., 1999. Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorph and Dreissena bugensis): Implication for trophic dynamics, Can. J. Fish. Aquat. Sci. 56: 1551-1561.   DOI
8 Alldredge, A.L., T.J. Cowles, S. MacIntyre, J.E.B. Rines, P.L. Donaghay, C.F. Greenlaw, D.V. Holliday, M.M. Dekshenieks, L.M. Sullivan and J.R. Zaneveld, 2002. Occurrence and mechansms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Marine Ecology Progress Series 233: 1-12.   DOI
9 Churnside, J.H. and P.L. Donaghay, 2009. Thin scattering layers observed by airborne lidar, Journal of Marine System, 66: 778- 789.
10 Cheriton, O.M., M.A. McManus, D.V. Holliday, C.F. Greenlaw, P.L. Donaghay and T.J. Cowles, 2007. Effects of Mesoscale physical processes on thin zooplankton layers at four sites along the west coast of the U.S., Estuaries and coasts 30(4): 575-590.   DOI
11 Donaghay P.L., H.M. Rines and J.M. Sieburth, 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch Hydrobiology 36: 97-108.
12 Criminaldi, J.P. and H.S. Browning, 2004. A proposed mechanism for turbulent enhancement of broadcast spawning efficiency, J. Mar. Sys. 49, 3-18.   DOI   ScienceOn
13 Dekshenieks, M.M., P.L. Donaghay, J.M. Sullivan, J.E.B. Rines, T.R. Osborn and M.S. Twardowski, 2001. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes.Mar. Eco. Prog. Ser. 223: 61-71.   DOI
14 Denman, K.L. 1984. Predictability of the marine ecosystem, In Predcitibility of Fluid Motions, G. Holloway and Bb. West, eds. American Institute of Physics, New York, pp 601-602.
15 Durham, W.M., J.O. Kessler and R. Stocker, 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers, Science, 323: 1067-1070   DOI   ScienceOn
16 Durham, W.M., E. Climent and R. Stocker, 2011. Gyrotaxis in a steady Vortical Flow, Physical Review Letters, 106, 238102-1-238102-4. DOI: 10.1103/PhysRevLett.106.238102.   DOI   ScienceOn
17 Franks, P.J.S., 1995. Thin layers of phytoplankton: a model of formation by near inertial wave shear, Deep-Sea Research I, 42(1): 75-91.   DOI   ScienceOn
18 Gargett, 1997. "Theories" and techniques for observing turbulence in the ocean euphotic zone, Sci. Mar., 61: 22-45.
19 Hoecker-Martinez, M.S. and W.D. Smyth, 2012. Trapping of Gyrotactic organisms in an unstable shear layer Continental Shelf Research 36, 8-18. DOI: 10.1016/j.csr.2012.01.003.   DOI   ScienceOn
20 Hwang, J.H., H. Yamazaki and C.R. Rehmann, 2006. Buoyancy generated turbulence in sheared stably stratified flow. Phys. Fluids, 18, 045104.   DOI   ScienceOn
21 McManus, M.A., O.M. Cheriton, P.J. Drake, D.V. Holliday, C.D. Storlazzi, P.L. Donaghay and C.F. Greenlaw, 2005. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean., Marine Ecology Progress series. 301: 199-215.   DOI
22 Jumars, P.A., J.H. Trowbridge, E. Boss, and L. Karp-Boss, Turbulence- plankton interactions: A new cartoon, submitted to Marine Ecology:An Evolutionary perspective.
23 Holliday D.V., P.L. Donaghay, G.F. Greenlaw, D.E. McGeee, M.A. McManus, J.M. Sullivan and J.L., Miksis, 2003. Advances in defining fine- and microscale patterns in plankton. Aquatic Living Resources 16: 131-136.   DOI   ScienceOn
24 McManus, M.A., A.L. Alldredge, A.H. Barnard, E.Boss, J.F. Cases, T.J. Cowles, P.L.Donaghay, L.B. Eisner, D.J. Gifford, C.F.Greenlaw, C.M.Herren, D.V. Holliday, D. Johnson, S. MacIntyre, D.M. McGhee, T.R. Osborn, M.J. Perry, E. Pieper, J.E.B. Rines, D.C. Smith, J.M. Sullivan, M.K. Talbot, M.S. Twardowski, A. Weidemann and J.R. Zaneveld, 2003. Characteristics, distribution and persistence of thin layer over a 48-hour period, Marine ecology progress series, 261: 1-19.   DOI
25 Maxey, M.R. and J.J. Riley, 1983. Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26: 883-890.   DOI
26 Metcalfe, A.M., Pedley, T.J. and Thingstad, T.F. 2004. Incorporating turbulence into a plankton foodweb model, J. Mar. Sys. 1-18.
27 Nowell, A.R.M. and P.A. Jumars, 1984. Fluid and sediment dynamic effects on marine benthic communicty strcuture, Ann. Rev. Ecol. Syst., 15: 303-328.   DOI
28 Osborn, T.R. 1998. Finestructure, microstructure, and thin layers, Oceanography, 11: 36-43.   DOI
29 Rothschild, B.J. and T.R. Osborn, 1988. Small-scale turbulence and planktonic contact rates J. Plankton Res., 10: 465-474.   DOI
30 Squires, K.D. and J.K. Eaton, 1991. Preferential concentration of particles by turbulence, Phys. Fluids. 3: 1169-1178.   DOI
31 Squires, K.D. and H. Yamazaki, 1995. Preferential concentration of marine paricles in isotropic turbulence, Deep-Sea Res. 42: 1989- 2004.   DOI   ScienceOn
32 Sullivan, J.M., D.V. Holliday, M. McFarland, M.A. McManus, O.M. Cheriton, K.J. Benoit-Bird, L. Goodman, Z. Wang, J.P. Ryan, M. Stacey, C. Greenlaw and M. A. Moline, 2010. Layered organism in the coastal ocean: An introduction to planktonic thin layers and the LOCO project. Continental Shelf Research 30, 1-6. DOI: 10.1016/j.csr.2009.09.001.   DOI   ScienceOn
33 Sullivan, J.M., P.L. Donaghay and J.E.B. Rines, 2010. Coastal thin layer dynamics: consequences to biology and optics. Continental shelf research, 30: 50-65, DOI: 10.1015/j.csr.2009.07.009.   DOI
34 Sundermeryer, M.A., J.R. Ledwell, N.S. Oakey and J.W. Greenan, 2004. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogra.
35 Thomas, W.H. and C.H. Gibson, 1992. Effects of qualified smallscale turbulence on the dianoglagellate, Gymnodinium sanquineum (splendens): contrast with Gonyaulax (Linqulodinium) polyedra and the fishery implication., Deep-Sear Res. 39: 1429-1437.   DOI   ScienceOn
36 Torney, C. and Z. Neufeld, 2007. Transport and Aggregation of Self- Propelled Particles in Fluid Flows, Physical Review Letters, 99: 078101-1-078101-4.   DOI   ScienceOn
37 Yamazaki, H., 1993. Lagrangian study of planktonic organisms: perpectives. Bull. Mar. Sci. 53: 265-278.
38 Yamazaki, H., D.L. Mackas and K.L. Denman, 2002. Coupling small-scale physical process with biology, In The Sea, A.R. Robinson, J. McCarthy, and J. Rothschid, John Wiely & Sons, Inc. New York, pp 51-112.