• Title/Summary/Keyword: thin-film thickness profile measurement

Search Result 9, Processing Time 0.035 seconds

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Thin film thickness profile measurement using white light scanning interferometry (백색광 주사 간섭법을 이용한 박막의 두께 형상 측정법)

  • 김기홍;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.373-378
    • /
    • 1999
  • White light scanning interferometry is increasingly used for precision profile metrology of engineering surfaces, but its current application is primarily limited to opaque surfaces with relatively simple optical reflection behaviors. In this paper, a new attempt is made to extend the interferometric method to the thickness profile measurement of transparent thin film layers. An extensive frequency domain analysis of multiple reflection is performed to allow both the top and bottom interfaces of a thin film layer to be measured independently at the same time using nonlinear least squares technique. This rigorous approach provides not only point-by-point thickness probing but also complete volumetric film profiles digitized in three dimensions.

  • PDF

The Effect of Drive-in Process Temperature on the Residual Stress Profile of the p+ Thin Film (후확산 공정 온도가 p+ 박막의 잔류 응력 분포에 미치는 영향)

  • Jeong, O.C.;Park, T.G.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2533-2535
    • /
    • 1998
  • In this paper, an effect of drive-in process temperature on the residual stress profile of the p+ silicon film has been investigated. The residual stress profile has been calculated as the fourth-order polynomials. All coefficients of the polynomials have been determined from the measurement of the vertical deflections of the p+ silicon cantilevers with various thickness and the tip displacement of the p+ silicon rotating beam. From the determination results of the residual stress profile, the average stress of the film thermally oxidized at 1000 $^{\circ}C$ is 15 MPa and that of the film oxidized at 1100 $^{\circ}C$ is 25 MPa. The profile of the residual stress through the high temperature drive-in process has a steeper gradient than the other case.

  • PDF

Research on the copper diffusion process in germanium metal induced crystallization by different thickness and various temperature

  • Kim, Jinok;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.1-289.1
    • /
    • 2016
  • Germanium (Ge) with higher carrier mobility and a lower crystallization temperature has been considered as the channel material of thin-film transistors for display applications. Various methods were studied for crystallizaion of poly-Ge from amorphous Ge at low temperature. Especially Metal induced crystalliazation (MIC) process was widely studied because low process cost. In this paper, we investigate copper diffusion process of different thick (70 nm, 350 nm) poly-Ge film obtained by MIC process at various temperatures (250, 300, and $350^{\circ}C$) through atomic force microscopy (AFM), Raman spectroscopy, and secondary ion mass spectroscopy (SIMS) measurement. Crystallization completeness and grain size was similar in all the conditions. Copper diffusion profile of 370 nm poly-Ge film show simirly results regardless of process temperature. However, copper diffusion profile of 70 nm poly-Ge film show different results by process temperature.

  • PDF

Oxide Thickness Measurement of CMP Test Wafer by Dispersive White-light Interferometry (분산형 백색광 간섭계를 이용한 CMP 테스트 웨이퍼의 $SiO_2$ 두께 측정)

  • Park, Boum-Young;Kim, Young-Jin;Jeong, Hae-Do;Ghim, Young-Sik;You, Joon-Ho;Kim, Seung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.86-87
    • /
    • 2007
  • The dispersive method of white-light interferometry is proper for in-line 3-D inspection of dielectric thin-film thickness to be used in the semiconductor and flat-panel display industry. This research is the measurement application of CMP patterned wafer. The results describe 3-D and 2-D profile of the step height during polishing time.

  • PDF

Measurement of Thin Film Thickness of Patterned Samples Using Spectral Imaging Ellipsometry (분광결상 타원계측법을 이용한 패턴이 형성된 나노박막의 두께측정)

  • 제갈원;조용재;조현모;김현종;이윤우;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.15-21
    • /
    • 2004
  • 반도체 제조산업과 나노, 바이오 산업의 비약적 발전에 따라 게이트 산화막(gate oxide)과 같이 반도체 제조공정에서 사용되는 유전체 박막(dielectric film)의 두께는 수 $\mu\textrm{m}$에서 수 nm 에 이르기까지 다양할 뿐 아니라 얇아지고 있으며, 또한 이러한 박막들이 다층으로 복잡하게 적층된 다층 박막의 응용이 높아지는 추세이다. 따라서, 반도체 및 광통신 소자, 발광소자, 바이오 칩 어레이 등과 같은 나노박막을 이용하는 산업에서는 박막의 두께 측정을 더욱 정확하고, 보다 빠르며 효율적으로 측정할 수 있는 박막 두께 측정용 계측기가 요구된다.(중략)

Ga Distribution in Cu(In,Ga)Se2 Thin Film Prepared by Selenization of Co-Sputtered Cu-In-Ga Precursor with Ga2Se3 Layer (Ga2Se3 층을 Cu-In-Ga 전구체 위에 적용하여 제조된 Cu(In,Ga)Se2 박막의 Ga 분포 변화 연구)

  • Jung, Gwang-Sun;Shin, Young-Min;Cho, Yang-Hwi;Yun, Jae-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.434-438
    • /
    • 2010
  • The selenization process has been a promising method for low-cost and large-scale production of high quality CIGS film. However, there is the problem that most Ga in the CIGS film segregates near the Mo back contact. So the solar cell behaves like a $CuInSe_2$ and lacks the increased open-circuit voltage. In this study we investigated the Ga distribution in CIGS films by using the $Ga_2Se_3$ layer. The $Ga_2Se_3$ layer was applied on the Cu-In-Ga metal layer to increase Ga content at the surface of CIGS films and to restrict Ga diffusion to the CIGS/Mo interface with Ga and Se bonding. The layer made by thermal evaporation was showed to an amorphous $Ga_2Se_3$ layer in the result of AES depth profile, XPS and XRD measurement. As the thickness of $Ga_2Se_3$ layer increased, a small-grained CIGS film was developed and phase seperation was showed using SEM and XRD respectively. Ga distributions in CIGS films were investigated by means of AES depth profile. As a result, the [Ga]/[In+Ga] ratio was 0.2 at the surface and 0.5 near the CIGS/Mo interface when the $Ga_2Se_3$ thickness was 220 nm, suggesting that the $Ga_2Se_3$ layer on the top of metal layer is one of the possible methods for Ga redistribution and open circuit voltage increase.

Second Harmonic Rotational Anisotropy of Polycrystalline Fe Films on Glass Substrates (유리 위에 증착된 다결정 Fe 자성박막의 이차조화파 회전 이방성)

  • Lee, Feel;Jeong, Jae-Woo;Lee, Hun-Sung;Lee, Kyung-Dong;Kim, Ji-Wan;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The surface structure of polycrystalline Fe films of various thicknesses on glass substrates have been studied using a Ti: Sapphire laser at 780 nm. We found that the surface structure possesses C$_s$ crystal structure close to $C_{2v}$ through symmetry consideration. We present one-fold intensity profile with one mirror plane in second harmonic (SH) intensity as a proof of $C_s$ symmetry. $C_s$ and $C_{2v}$ surface symmetries usually appear at the (110) surface of a cubic diamond single crystal [1]. Therefore this surface symmetry would be related to bcc (110) growth orientation coinciding with XRD measurement. Further we treated surface normalized SH asymmetry with various thicknesses. The SH asymmetry increases with increasing of film thickness. From these results, it is observed that the surface structure of thin polycrystalline Fe film below 5 nm is almost isotropic, while in the case of the thicker Fe films, surface structure have $C_s$ symmetry structure close to $C_{2v}$.