• Title/Summary/Keyword: thin-film optics

Search Result 178, Processing Time 0.026 seconds

Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume (눈물양에 따른 토릭 소프트콘택트렌즈의 축 회전양 변화)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.445-454
    • /
    • 2015
  • Purpose: The present study was aimed to investigate the effect of tear volume on a change of axial rotation according to wearing time of toric soft contact lens and gaze directions. Method: Toric soft contact lenses with double thin zone design applied on 62 eyes. Then, changes in non invasive tear film break-up time and the rotational direction/amount of lens when changing gaze direction were respectively measured after 15 minutes and 6 hours of lens wear. Results: Lens rotation to temporal direction was more found when changing gaze direction after lens wear. However, its rotation was varied according to wearing time and the subjects' tear volume. Furthermore, the frequency of lens rotation to temporal direction was higher in dry eyes compared with normal eyes at nearly all gaze directions after 15 minutes and 6 hour of lens wear. The rotational amount of lens was generally greater in dry eyes after 15 minutes of lens wear. However, its difference between normal eyes and dry eyes was not great after 6 hours of lens wear. Conclusion: The present study revealed that axial rotation of toric soft contact lens was varied according to the wearer's tear volume and lens rotational patterns at the initial, and extending periods of lens wear were different. The change in rotational pattern of toric soft contact lens from these results means the possibility of visual change after extending lens wear, and the identification of its correlation with tear volume suggests the necessity of considering factors for choosing appropriate toric soft contact lens.

Study of optimum growth condition of phase change Ge-Sb-Te thin films as an optical recording medium using in situ ellipsometry (In situ 타원법을 사용한 광기록매체용 Ge-Sb-Te 박막의 최적성장조건 연구)

  • Kim, Sang-Youl;Li, Xue-Zhe
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • The spectroe-ellipsometric constant $\Delta$, Ψ and the ellipsometric growth curves at the wavelength of 632.8 nm are collected. These are critically examined to find out the optimum growth condition of phase change $Ge_2Sb_2Te_5(GST)$ thin films as an optical recording medium. GST films are prepared using DC magnetron sputtering technique, under the selected experimental conditions of Ar gas pressure (5 mTorr, 7 mTorr and 10 mTorr), DC power of sputtering gun (15 W, 30 W and 45 W), and substrate temperature (from room temperature to 18$0^{\circ}C$). Based on the three film model, the density distribution of deposited GST films are obtained versus Ar gas pressure and DC power by analyzing spectro-ellipsometric data. The calculated evolution curves at the wavelength of 632.8 nm, are fit into the in situ observed ones to get information about the evolution of density distribution during film growth. The density distribution showed different evolution curves depending on deposition conditions. The GST films fabricated at DC power of 30 W or 45 W, and at Ar gas pressure of 7 mTorr turned out to be the most homogeneous one out of those prepared at room temperature, even though the maximum density difference between the dense region and the dilute region of the GST film was still significant (~50%). Finally, in order to find the optimum growth condition of homogeneous GST thin films, the substrate temperature is varied while Ar gas pressure is fixed at 7 mTorr and DC power at 30 W and 45 W respectively. A monotonic decrease of void fraction except for a slight increase at 18$0^{\circ}C$ is observed as the substrate temperature increases. Decrease of void fraction indicates an increase of film density and hence an improvement of film homogeneity. The optimum condition of the most homogeneous GST film growth turned out to be 7 mTorr of Ar gas pressure, 15$0^{\circ}C$ of substrate temperature. and 45 W of DC power. The microscopic images obtained using scanning electron microscope, of the samples prepared at the optimum growth condition, confirmed this conclusion. It is believed that the fabrication of homogeneous GST films will be quite beneficial to provide a reliable optical recording medium compatible with repeated write/erase cycles.

Spot marking of the multilayer thin films by Nd:YAG laser (Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹)

  • Kim, Hyun-Jin;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.361-368
    • /
    • 2004
  • We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

Improving the Color Gamut of a Liquid-crystal Display by Using a Bandpass Filter

  • Sun, Yan;Zhang, Chi;Yang, Yanling;Ma, Hongmei;Sun, Yubao
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • To improve the color gamut of a liquid-crystal display (LCD), we propose a bandpass filter that is added to the backlight unit to optimize the backlight spectrum. The bandpass filter can only transmit red, green and blue light in the visible range, while reflecting the unwanted light. We study the optical properties of the bandpass filter using the transfer-matrix method, and the effect of the bandpass filter on the color gamuts of LCDs is also investigated. When a bandpass filter based on a 5-layer configuration comprising low and high refractive indices ((HL)2H) is used in phosphor-converted white-light-emitting diode (pc-WLED), K2SiF6:Mn4+ (KSF-LED), and quantum-dot (QD) backlights, the color gamuts of the LCDs improve from 72% to 95.3% of NTSC, from 92% to 106.7% of NTSC, and from 104.3% to 112.2% of NTSC respectively. When the incident angle of light increases to 30°, the color gamuts of LCDs with pc-WLED and KSF-LED backlights decrease by 2.9% and 1% respectively. For the QD backlight, the color gamut almost does not change. When the (HL)2H structure is coated on the diffusion film, the color gamut can be improved to 92.6% of NTSC (pc-WLED), 105.6% of NTSC (KSF-LED), and 111.9% of NTSC (QD). The diffusion film has no obvious effect on the color gamut. The results have an important potential application in wide-color-gamut LCDs.

Fabrication of bifocal holographic lenses by holographic polymer dispersed liquid crystal film (홀로그래픽 고분자 분산 액정을 이용한 홀로그램 이중 초점 렌즈 제작)

  • Lee, Jung-Hoon;Sung, Gee-Young;Lee, Sang-Jo;Kim, Ki-Hyun;Joh, Young-Gul;Kwak, Chong-Hoon;Song, Jae-Bong;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • We Have fabricated a holographic polymer-dispersed liquid crystal (HPDLC) thin film, which is composed of multifunctional acrylate monomer blended with the nematic liquid crystal mixture, and then investigated the real-time diffraction efficiencies for various amounts of liquid crystals and applied AC electric fields. It is experimentally shown that the holographic gratings recorded in the HPDLC film can be reversibly erased and reconstructed by switching on and off an appropriate applied AC electric field. By use of these electro-optic properties we have developed bifocal holographic lenses having two different focal lengths of 30cm and 40 cm.

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.

Structural and optical properties of TiO2 thin films prepared by Sol-Gel dip coating method (졸-겔 침지코팅법으로 제조된 TiO2 박막의 구조적.광학적 특설)

  • 김동진;이학준;한성홍;김의정
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The TiO$_2$ coating solutions were synthesized with different concentrations (T1-0.7N, T2-2.0N) of hydrochloric acid used as catalyst. and TiO$_2$ thin films were prepared by sol-gel dip coating. Their structural and optical properties were examined as a function of calcination temperature. XRD results showed that T1 thin films calcined at 400~80$0^{\circ}C$ had the anatase phase, while those calcined at 100$0^{\circ}C$ had the rutile phase. T2 thin films calcined at 40$0^{\circ}C$ and $600^{\circ}C$ had the anatase phase, with the rutile phase for calcination at 80$0^{\circ}C$. Crystallinity of T2 thin films was superior to that of T1 thin films. The crystallite size of TiO$_2$ thin films increased with increasing calcination temperature, and the crystallite size of anatase phase in T2 thin films was larger than that in T1 thin films, but the crystallite size of rutile phase in T2 thin films was smaller. The surface morphology of the films showed that the films were formed more densely in the rutile phase than in the anatase phase, this phenomenon appeared conspicuously in T2 thin films. The transmittance of the samples with thin films on quartz glass calcined at 100$0^{\circ}C$ was significantly reduced at wavelength range about 300-700 nm due to the increased absorption originating from the change of crystallite phase and composition of the films and the scattering effect originating from increasing crystallite size. The refractive index of TiO$_2$ thin films increased, and hence the film thickness as well as the porosity of TiO$_2$ thin films decreased with increasing calcination temperature. Furthermore, the refractive index of T2 thin films was higher than T1 thin films, and porosity of T2 films was lower.

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature (온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화)

  • Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

Effect of Annealing Temperature after Deposition on the Structural, Electrical and Optical Properties of In2O3 Films (증착 후 열처리 온도에 따른 In2O3 박막의 구조적, 전기적, 광학적 특성 변화)

  • Lee, Y.J.;Lee, H.M.;Heo, S.B.;Kim, Y.S.;Chae, J.H.;Kong, Y.M.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.307-310
    • /
    • 2011
  • We have investigated the structural, electrical and optical properties of $In_2O_3$ thin films deposited by RF magnetron sputtering and then annealed at $150^{\circ}C$ and $300^{\circ}C$ in vacuum. The structural and electrical properties are strongly related to annealing temperature. All the annealed $In_2O_3$ films are grown as a hexagonal wurtzite phase and the largest grain size is observed in the films annealed at $300^{\circ}C$. The sheet resistance decreases with a increase in annealing temperature and $In_2O_3$ film annealed at $300^{\circ}C$ shows the lowest sheet resistance of $174{\Omega}/{\Box}$. The optical transmittance of $In_2O_3$ films in a visible wavelength region also depends on the annealing temperature. The films annealed at $300^{\circ}C$ show higher transmittance of 76% than those of the films prepared in this study.

Polarization property of dichromated gelatin hologram and it's application to holographic polarization separation element (Dichromated Gelatin 홀로그램의 편광 특성과 편광분리 소자 응용)

  • 이영락;임용석;곽종훈;최옥식;박진원;이윤우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.260-266
    • /
    • 1997
  • Holographic optical elements for polarization separation (HPS) are fabricated in a dichromated gelatin(DCG) thin film of 7${\mu}{\textrm}{m}$ thickness. The polarization properties of HPS is characterized by measuring diffraction efficiency with several physical parameters like exposure time, incident angle and read-out polarization angles. The experimental data are compared with theoretical results based on Kogelnik's coupled wave theory, which shows good agreement. It is also found that the HPS element has a very high extinction ratio of polarization over 500:1 for S and P polarizations, respectively, with He-Ne laser wavelength. We also propose an optical switch optical interconnects by using HPS elements.

  • PDF