• Title/Summary/Keyword: thin-film deposition

Search Result 2,988, Processing Time 0.032 seconds

Differentiating Plasma Regions Through the non-Linear Relationship between the Band-gap and the Deposition-rate of a-Si Thin Films (a-Si 막의 Band-gap과 Deposition-rate간의 비선형 거동을 통한 플라즈마 영역의 경계 규명)

  • Park, Sung-Yul L.;Kim, Hee Won;Kim, Sang Duk;Kim, Jong Hwan;Kim, Bum Sung;Lee, Don Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • Thin film a-Si solar cells deposited by PECVD have many advantages compared to the traditional crystalline Si solar cells. They do not require expensive Si wafer, the process temperature is relatively low, possibility of scaling up for mass production, etc. In order to produce thin film solar cells, understanding the relationship between the material characteristics and deposition conditions is important. It has been reported by many groups that the band gap of the a-Si material and the deposition rate has an linear relationship, when RF power is used to control both. However, when the process pressure is changed in order to control the deposition rate and the band gap, a diversion from the well known linear relationship occurs. Here, we explain this diversion by the deposition condition crossing different plasma regions in the Paschen curve with a simple model. This model will become a guide to which condition a-Si thin films must be fabricated in order to get a high quality film.

  • PDF

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

Effect of Deposition Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by RF Magnetron Sputtering (스퍼터 공정을 이용한 SiZnSnO 산화물 반도체 박막 트랜지스터의 증착 온도에 따른 특성)

  • Ko, Kyung Min;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.282-285
    • /
    • 2014
  • We have investigated the structural and electrical properties of Si-Zn-Sn-O (SZTO) thin films deposited by RF magnetron sputtering at various deposition temperatures from RT to $350^{\circ}C$. All the SZTO thin fims are amorphous structure. The mobility of SZTO thin film has been changed depending on the deposition temperature. SZTO thin film transistor shows mobility of 8.715 $cm^2/Vs$ at room temperature. We performed the electrical stress test by applying gate and drain voltage. SZTO thin film transistor shows good stability deposited at room temperature while showing poor stability deposited at $350^{\circ}C$. As a result, the electrical performance and stability have been changed depending on deposition temperature mainly because high deposition temperature loosened the amorphous structure generating more oxygen vacancies.

The Molecular Orientation of PVDF Organic Thin Film by Vapor Deposition Method (진공증착법을 이용한 PVDF 유기박막의 분자배향)

  • 박수홍;이선우;임응춘;최충석;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.297-300
    • /
    • 1997
  • In this study, The PVDF thin film was fabricated on the one method of dry-process the physical vapor deposition method, applied electric field, and evaporation control in $\beta$-PVDF thin film preparation. A study on the electric-field-phase change of PVDF thin film in physical vapor deposition using the polymer deposition apparatus which are manufactured for oneself. In the analysis of Fourier-Transform Infrared spectra, according to increasing of electric field intensity, the 510$cm^{-1}$ / peak and 1273$cm^{-1}$ / peak which are showed in $\beta$-PVDF increase, on the contrary the 530$cm^{-1}$ / peak and 977$cm^{-1}$ / peak which are showed in $\alpha$-PVDF decrease.

  • PDF

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

  • Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.