• 제목/요약/키워드: thin wafer handling

검색결과 8건 처리시간 0.031초

Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작 (Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems)

  • 강유리;김용국;김수원;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

비접촉식 웨이퍼 그리퍼용 공압 파지식 헤드 설계 (Design of the Air Pressure Pick-up Head for Non-Contact Wafer Gripper)

  • 김준현
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.401-407
    • /
    • 2012
  • The recent manufacturing process in the thin wafers and flat panel necessitate new approaches to reduce handling fragile and surface-sensitive damage of components. This paper presents a new pneumatic levitation for non-contact handling of parts and substrates. This levitation can achieve non-contact handling by blowing air into an air pressure pick-up head with radial passages to generate a negative pressure region. Negative pressure is caused by the radial air flow by nozzle throat and through holes connecting to the bottom region. The numerical analysis deals with the levitational motion with different design factors. The dynamic motion is examined in terms of force balance(dynamic equilibrium) occurring to the flow field between two objects. The stable equilibrium position and the safe separation distance are determined by analyzing the local pressure distribution in the fluid motion. They make considerable design factors consisting the air pressure pick-up head. As a result, in case that the safe separation distance is beyond 0.7mm, the proposed pick-up head can levitate stably at the equilibrium position. Furthermore, it can provide little effect of torque, and obtain more wide picking region according to the head size.

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

PV모듈의 cell crack 방지를 위한 EVA Sheet의 최적 Gel content 특성 (The Optimimum Gel Content Characteristics for Cell Cracks Prevention in PV Module)

  • 강경찬;강기환;김경수;허창수;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1108-1109
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. Solar cell's micro cracks are increasing the breakage risk over the whole value chain from the wafer to the finished module, because the wafer or cell is exposed to tensile stress during handling and processing. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Si 기판의 연삭 공정이 산화주석 박막의 전기적 성질에 미치는 영향 연구 (Effect of Si grinding on electrical properties of sputtered tin oxide thin films)

  • 조승범;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.49-53
    • /
    • 2018
  • 최근 유연 소자, 투명 소자, MEMS 소자와 같은 다양한 소자를 결합하는 시스템 집적화 기술이 많이 개발되고 있다. 이러한 다종 소자 시스템 제조 기술의 핵심 공정은 칩 또는 웨이퍼 레벨의 접합 공정, 기판 연삭 공정, 그리고 박막 기판 핸들링 기술이라 하겠다. 본 연구에서는 Si 기판 연삭 공정이 투명 박막 트랜지스터나 유연 전극 소재로 적용되는 산화주석 박막의 전기적 성질에 미치는 영향을 분석하였다. Si 기판의 두께가 얇아질수록 Si d-spacing은 감소하였고, Si 격자 내에 strain이 발생하였다. 또한, Si 기판의 두께가 얇아질수록 산화주석 박막 내 캐리어 농도가 감소하여 전기전도도가 감소하였다. 얇은 산화 주석 박막의 경우 전기전도도는 두꺼운 산화 주석 박막보다 낮았으며 Si 기판의 두께에 의해 크게 변하지 않았다.

태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화 (Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells)

  • 강병준;박성은;이승훈;김현호;신봉걸;권순우;변재원;윤세왕;김동환
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.