• Title/Summary/Keyword: thin polymer film

Search Result 568, Processing Time 0.032 seconds

Effect of Curing Conditions of a Poly(4-vinylphenol) Gate Dielectric on the Performance of a Pentacene-based Thin Film Transistor

  • Hwang, Min-Kyu;Lee, Hwa-Sung;Jang, Yun-Seok;Cho, Jeong-Ho;Lee, Shic-Hoon;Kim, Do-Hwan;Cho, Kil-Won
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.436-440
    • /
    • 2009
  • We improved the performance of pentacene-based thin film transistors by changing the curing environment of poly(4-vinylphenol) (PVP) gate dielectrics, while keeping the dielectric constant the same. The field-effect mobility of the pentacene TFTs constructed using the vacuum cured PVP was higher than that of the device based on the Ar flow cured gate dielectric, possibly due to the higher crystalline perfection of the pentacene films. The present results demonstrated that the curing conditions used can markedly affect the surface energy of polymer gate dielectrics, thereby affecting the field-effect mobility of TFTs based on those dielectrics.

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition (폴리머 기판에 스퍼터법으로 경사 증착한 Cr박막의 특성)

  • Bae, Kwang-Jin;Choi, In-Kyun;Jeong, Eun-Wook;Kim, Dong-Yong;Lee, Tae-Yong;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.

Characteristics of Polymer irradiated by Low energy Ion Beam

  • sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.109-109
    • /
    • 1999
  • Recently, low energy ion beam irradiation has been adopted for surface modification. Low energy ion beam irradiation has many advantages in polymer engineering such as weak damage, good adhesion, noticeably-enhanced wettability(less than 15 degree), good reproducibility and so on. In this experiment, chemical reactions between free radicals and environment gas species have been investigated using angle-resolved XPS and TRIM code. In the case of low ion beam energy (around 1 keV), energy loss in polymer is mainly originated from atomic collisions instead of electronic interference. Atomic collisions could generated displaced atoms and free radicals. Cold cathode-ion source equipped with 5cm convex grid was used in an O2 environment. Base and working pressure were 5$\times$10-6 and 2.3$\times$10-4 Torr. Flow rates of argon and oxygen were fixed at 1.2 and 8 sccm. target materials are polyethylene polyvinyidenefluoride and polytetrafluoroethylene.

  • PDF

Regulation of precursor solution concentration for In-Zn oxide thin film transistors

  • Chen, Yanping;He, Zhongyuan;Li, Yaogang;Zhang, Qinghong;Hou, Chengyi;Wang, Hongzhi
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1300-1305
    • /
    • 2018
  • The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.

Metallization of Polymers Modified by Ton-Assisted Reaction (IAR)

  • J.S. Cho;Bang, Wan-Keun;Kim, K.H.;Sang Han;Y.B. Sun;S.K. Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2001
  • Surfaces of PTFE and PVDF were modified by ion-assisted reaction (IAR) in which 1 keV $Ar^{+}$ ions were irradiated on the surface of the polymer with varying ion dose in an oxygen gas environment, and Cu, Pt, Al and Ag thin films were deposited on the modified polymers. Wettability of the modified polymers was largely improved by the formation of hydrophilic groups due to chemical reaction between polymer surface and the oxygen gas during IAR. The change in wettability in the modified polymers was also related to the change in surface morphology and roughness. Adhesion between metal films and polymers modified by IAR was significantly improved, so that no detachment was possible in the $Scotch^{TM}$ tape test. The increase of adhesion strength between the metal film and the modified PVDF was mainly attributed to the formation of hydrophilic groups, which interacted with the metal film. In the case of the modified PTFE, the enhanced adhesion to metal film could be explained by the change in surface morphology together with the formation of hydrophilic groups. The electrical properties of the metal films on the modified polymers were also investigated.

  • PDF

Micro Patterning Using Near-Field Coupled Nano Probe Laser Photo Patterning Of Chloromethylated Polyimide Thin Film (클로로메틸 폴리이미드(CMPI) 박막과 근접장 나노 프로브 레이저 패터닝을 이용한 미세 형상 가공 기술)

  • 최무진;장원석;김재구;조성학;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.369-372
    • /
    • 2004
  • Photo-induced surface alignment is charming as a non-contact photo-patternable alignment technology which can be used in the next generation of displays, such as large area, multi-domain. For decades, many polymer film have been investigated and developed to be used in the photo alignment. Among these photoreactive materials, recently developed polyimide, Chloromethylated Polyimide(CMPI) now became the focus of interests in this area because of its high photosensitivity and superior thermal stability. In this report, we present micro patterning method to form the nanoscale structure by Mask-Less laser patterning using this CMPI film and NSOM probe.

  • PDF

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film (전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구)

  • Seo Yeong Son;Seong Yeon Park;Sangsub Lee;Changhun Yun
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.248-256
    • /
    • 2023
  • Indium tin oxide (ITO) transparent electrode film has been widely adopted for the various applications such as display and electric vehicle. In this paper, we studied how to enhance the thermoforming stability of ITO film by applying the highly conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin layer. Based on the change of sheet resistance value, the influence of the additional solvent with different boiling point was investigated for the PEDOT:PSS coating solution. In addition, by analyzing optical transmittance and Raman spectrum, we confirmed the key mechanism which determine the final electrical conductivity of the PEDOT:PSS on ITO film using an ethylene glycol solvent. The final ITO transparent electrode coated with PEDOT:PSS performed the outstanding endurance of electrical conduction even in 126% stretching condition.

Dielectric Property of Hydrophilic Copolymer Thin Films (친수성 고분자 박막의 유전 특성)

  • Choi, Seung-Ryul;Im, Kyung-Jin;Kim, Jun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.229-229
    • /
    • 2007
  • In this study, HEMA-based hydrophilic copolymers were synthesized and dielectric constant (K) of the polymer thin films were investigated by change hydroxyl group (-OH) ratio in the polymer chain. The different hydroxyl group ratios were characterized by FT-IR and its thin films were obtained by spin coating. As a result, due to the moisture absorption of the hydrophilic thin film, the dielectric constant has been increased as was expected. The highest dielectric constant (K=4.19, @1MHz) was observed at 40% hydroxyl group ratio among the several polymers.

  • PDF