Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.1.54

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition  

Bae, Kwang-Jin (School of Materials Science & Engineering, Pusan National University)
Choi, In-Kyun (School of Materials Science & Engineering, Pusan National University)
Jeong, Eun-Wook (School of Materials Science & Engineering, Pusan National University)
Kim, Dong-Yong (School of Materials Science & Engineering, Pusan National University)
Lee, Tae-Yong (Research & Development Division, Hyundai Motor Group)
Cho, Young-Rae (School of Materials Science & Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.25, no.1, 2015 , pp. 54-59 More about this Journal
Abstract
Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.
Keywords
glancing angle deposition; sputter; adhesion; polymer; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. K. Jain, Y. K. Gautam, V. Dave, A. K. Chawla and R. Chandra, Appl. Surf. Sci., 283, 332 (2013).   DOI   ScienceOn
2 S. Sarkar and S. K. Pradhan, Appl. Surf. Sci., 290, 509 (2014).   DOI   ScienceOn
3 S. P. Cao, F. Ye, B. Hou and A. Y. Xu, Thin Solid Films, 545, 205 (2013).   DOI   ScienceOn
4 M. W. Pyun, E. J. Kim, D. W. Yoo and S. H. Hahn, Appl. Surf. Sci., 257, 1149 (2010).   DOI   ScienceOn
5 D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto and T. Smy, Thin Solid Films, 339, 88 (1999).   DOI   ScienceOn
6 Y. E. Lee, S. G. Kim, Y. J. Kim and H. J. Kim, J. Vac. Sci. Technol., A 15(3), 1194 (1997).   DOI   ScienceOn
7 B. Rother and A. Mucha, Surf. Coat. Technol., 124, 128 (2000).   DOI   ScienceOn
8 K. A. Sierros, A. J. Kessman, R. Nair, N. X. Randall and D. R. Cairns, Thin Solid Films, 520, 424 (2011).   DOI   ScienceOn
9 G. K. Wehner and D. Rosenberg, J. Appl. Phys., 31(1), 177 (1960).   DOI
10 M. Takeuchi, K. Enoue, Y. Yoshino and K. Ohwade, Vacuum, 51(1), 565 (1998).   DOI   ScienceOn
11 J. T. Lee, Y. C. Park and B. J. Lee, Microelectro. Eng., 128(5), 85 (2014).   DOI   ScienceOn
12 S. Durdu, S. Bayramoglu, A. Demirtas, M. Usta and A. H. Ucisik, Vacuum, 88, 130 (2013).   DOI   ScienceOn
13 Y. R. Cho, Ph. D. Thesis (in German), p. 94-95, Stuttgart University, Stuttgart (1992).
14 K. K. Kumar, P. M. Raole, P. A. Rayjada, N. L. Chauhan and S. Mukherjee, Surf. Coat. Technol., 205, S187 (2011).   DOI   ScienceOn
15 R. Balu, A. R. Raju, V. Lakshminarayanam and S. Mohan, Mater. Sci. Eng., B 123, 7 (2005).   DOI   ScienceOn