• Title/Summary/Keyword: thin film semiconductors

Search Result 159, Processing Time 0.031 seconds

A Roll-to-Roll Process for Manufacturing Flexible Active-Matrix Backplanes Using Self-Aligned Imprint Lithography and Plasma Processing

  • Taussig, Carl;Jeffrey, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.808-810
    • /
    • 2005
  • Inexpensive large area arrays of thin film transistors (TFTs) on flexible substrates will enable many new display products that cannot be cost effectively manufactured by conventional means. This paper presents a new approach for low cost manufacturing of electronic devices using roll-to-roll (R2R) processes exclusively. It was developed in partnership by Hewlett Packard Laboratories and Iowa Thin Film Technologies (ITFT), a solar cell manufacturer. The approach combines ITFT's unique processes for vacuum deposition and etching of semiconductors, dielectrics and metals on continuous plastic webs with a method HP has invented for the patterning and aligning the multiple layers of a TFT with sub-micron accuracy and feature size.

  • PDF

NiOx-based hole injection layer for organic light-emitting diodes (유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구)

  • Kim, Junmo;Gim, Yejin;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.309-313
    • /
    • 2021
  • Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.

Properties of Thermoelectric Power in PbS Thin Films by Chemical Bath Deposition (화학 반응에 의한 PbS 박막의 열기전력 특성)

  • Cho, Jong-Rae;Cho, Jung-Ho;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.21-24
    • /
    • 2000
  • Properties of thermoelectric power in PbS thin films by chemical bath deposition were investigated The qualified PbS thin film was gained with the amounts of Thiourea($4-8ml/{\ell}$ ), Triethanolamine (1-2ml) and NaOH(l0ml). The molecular ratio of Pb and S was 3 : 7. Satisfied crystallization rate and deposition rate of PbS were greater at $50^{\circ}C$ than at $30^{\circ}C$. The constant of thermoelectric power in PbS was nearly $ 500uv/^{\circ}k$. The PbS thin film was changed from p-type to n-type semiconductor at around $200^{\circ}C$. In case of heat treatment at $300^{\circ}C$, the sample kept the characteristic of p-type semiconductors up to $250^{\circ}C$.

  • PDF

Magnetoresistance Characteristics due to the Schottky Contact of Zinc Tin Oixide Thin Films (ZTO 박막의 쇼키접합에 기인하는 자기저항특성)

  • Li, XiangJiang;Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.120-123
    • /
    • 2019
  • The effect of surface plasmon on ZTO thin films was investigated. The phenomenon of depletion occurring in the interface of the ZTO thin film created a potential barrier and the dielectric layer of the depletion formed a non-mass particle called plasmon. ZTO thin film represents n-type semiconductor features, and surface current by plasma has been able to obtain the effect of improving electrical efficiency as a result of high current at positive voltage and low current at negative voltage. It can be seen that the reduction of electric charge due to recombination of electronic hole pairs by heat treatment of compound semiconductors induces higher surface current in semiconductor devices.

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • Ga, Jae-Won;Jang, Gwang-Seok;Lee, Mi-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF