• Title/Summary/Keyword: thin film hardness

Search Result 193, Processing Time 0.025 seconds

Growth and characterization of BON thin films prepared by low frequency RF plasma enhanced MOCVD method

  • Chen, G.C.;Lim, D.-C.;Lee, S.-B.;Hong, B.Y.;Kim, Y.J.;Boo, J.-H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.510-515
    • /
    • 2001
  • It was first time that low frequency R.F. derived plasma enhanced MOCVD with frimethylborate precursor was used to fabricate a new ternary compound $BO_{x}$ $N_{y}$ . The formation of BON molecule was resulted from nitrogen nitrifying B-O, and forming the angular molecule structure proved by XPS and FT-IR results. The relationship between hardness and film thickness was studied. An thickness-independent hardness was fond about 10 GPa. The empirical calculation of band-gap and UV test result showed that our deposited $BO_{x}$ $N_{y}$ thin film was semiconductor material with 3.4eV of wide band gap. The electrical conductivity, $4.8$\times$10^{-2}$ /($\Omega$.cm)$^{-1}$ also confirmed that $BO_{x}$ $N_{y}$ has a semiconductor property. The roughness detected from the as-grown films showed that there was no serious bombarding effect due to anion in the plasma occurring in the RF frequency derived plasma.

  • PDF

Development of high power impulse magnetron sputtering (HiPIMS) techniques

  • Lee, Jyh-Wei
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.3-32
    • /
    • 2016
  • High power impulse magnetron sputtering (HiPIMS) technique has been developed for more than 15 years. It is characterized by its ultra-high peak current and peak power density to obtain unique thin film properties, such as high hardness, good adhesion and tribological performance. However, its low deposition rate makes it hard to be applied in industries. In this work, the development of HiPIMS system and integration of radio frequency (RF) or mid-frequency (MF) power supplies were introduced. Effects of duty cycle and repetition frequency on the microstructure, mechanical property, optical and electrical properties of some binary, ternary and quarternary nitride coatings and oxide thin films were discussed. It can be observed that the deposition rate was effectively increased by the superimposed HiPIMS with RF or MF power. High hardness, good adhesion and sufficient wear resistance can be obtained through a proper adjustment of processing parameters of HiPIMS power system.

  • PDF

Properties of Coating Films Synthesized from Colloidal Silica and UV-curable Acrylate resin (UV경화형 아크릴 수지와 콜로이드 실리카로 합성된 코팅막의 특성)

  • Kang, Young-Taec;Kang, Dong-Pil;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.551-552
    • /
    • 2007
  • Coating films were prepared from silane-terminated Colloidal silaca(CS) and UV-curable acrylate resin. The silane-terminated CSs were synthesized from CS and methyltrimethoxysilane(MTMS) and then treated with 3-methacryloxypropyltrimethoxysilane(MAPTMS)/3-glycidoxypropyltrimethoxysilane( GPTMS)/vinyltrimethoxysilane(VTMS) by sol-gel process, respectively. The silane-terminated CS and acrylate resin were hybridized using UV-curing system. Thin films of hybrid material were prepared using spin coater on the glass. Their hardness, contact angle and transmittance improved with the addition of silane-terminated CS.

  • PDF

Structure and Mechanical Characteristics of ZrCrAIN Nanocomposite Thin Films by CFUBMS (CFUBMS을 이용한 ZrCrAIN 나노복합 박막의 구조와 기계적 특성)

  • Kim Youn J.;Lee Ho Y.;Shin Kyung S.;Jung Woo S.;Han Jeon G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.183-187
    • /
    • 2005
  • The quaternary ZrCrAIN nanocomposite thin films are synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS). Microstructure and mechanical properties of ZrCrAIN nanocomposite thin films are studied. Grain refinement of ZrCrAIN nanocomposite thin film is occurred by controlling $N_{2}$ partial pressure. Maximum hardness value according to the various $N_{2}$ partial pressures is obtained at 45 GPa. It is also conformed that critical value of the grain size (d) needs to achieve the maximum hardness.

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Silica Coating on Polymethylmethacrylate by Sol-Gel Process (졸-겔공정에 의해 Polymethylmethacrylate위에 실리카 코팅)

  • 이상근;양천회
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.79-85
    • /
    • 1997
  • In order to improve the surface characteristics of polymethylmethacrylate(PMMA), oxide thin film coatings were applied using the sol-gel dip-coating technique. The $Si(OC_2H_5)_4$, tetra-ethyl-ortho-silicate(TEOS) was used as a starting material for $SiO_2$ coating. The hardness of the alkoxy-derived oxide-coated PMMA was increased from 190 MPa for non-coated PMMA with increasing film thickness. By optimizing the heating conditions and the hydrolysis conditions, a maximum apparent hardness obtained In the present study was achieved 310 MPa using the withdrawal velocity of 5cm/min and heat treatment at $90^{\circ}C$ for 5 hours, which is about 1.6 times larger than that of uncoated PMMA.

  • PDF

Fabrication and Characterization of Y2Ti2O7 Powder and Thick Film by Chemical Processing (화학적 공정을 이용한 Y2Ti2O7 분말과 후막 제조 및 특성)

  • Lee, Won-Joon;Choi, Yeon-Bin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.289-293
    • /
    • 2017
  • $Y_2Ti_2O_7$ nanoparticles (0.3 mol%) have been successfully synthesized by the co-precipitation process. The samples, adjusted to pH7 with ammonia solution as catalyst and calcined at $700{\sim}900^{\circ}C$, exhibit very fine particles with close to spherical shape and average size of 10-30 nm. It was possible to control the size of the synthesized $Y_2Ti_2O_7$ particles by manipulating the conditions. The $Y_2Ti_2O_7$ nanoparticles were coated on a glass substrate by a dipping coating process with inorganic binder. The $Y_2Ti_2O_7$ solution coated on the glass substrate had excellent adhesion of 5B; pencil hardness test results indicated an excellent hardness of 6H. The thickness of the thick film was about $30{\mu}m$. Decomposition of MB on the $Y_2Ti_2O_7$ thin film shows that the photocatalytic properties were excellent.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

A Study of cut off effect of ultraviolet in sunglasses lens coated with nickel-ferrite thin film NxFe3-xO4 (니켈페라이트 박막 NxFe3-xO4를 이용한 선글라스 렌즈의 자외선 차단효과에 대한 연구)

  • Ha, T.W.;Lee, Y.H.;Choi, K.S.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2003
  • Nickel-ferrite $Ni_xFe_{3-x}O_4$ thin films with several composition for Ni on glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and shield electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss as mirror and has high hardness which is no scratch while scraping by using nail. The transmittance of nickel-ferrite thin film is lowered to zero below 400 nm manifestly. And it shows that the nickel-ferrite thin film in nickel composition rate x = 0.09 was most cut oil ultraviolet when compared with goods of other company in the cut off effect of ultraviolet. Therefore, sunglasses coated with $Ni_xFe_{3-x}O_4$ thin film can be used in removing ultraviolet and electromagnetic field.

  • PDF

A Study on the Microscopically Characteristics of Properties of the Magnetic Recording Disk (자기저장 디스크 표면의 물성치에 관한 미소특성 연구)

  • Hwang, Pyung;Kim, Do-Hyung;Kim, Jang-Kyo
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.52-58
    • /
    • 1999
  • Nano-indentation and nano-scratch tests were peformed to assess the mechanical and tribological properties of the coating on a commercially available thin-film magnetic recording disk. Surface topography and roughness of the disk was studied using atomic force microscopy. The hardness and elastic modulus data show a peak at an indentation depth equivalent to the thickness of carbon overcoat, indicating strong influence of the coatin $g_strate interaction and the coating surface roughness on the measurements. The variations of surface roughness data were analysed statistically based on the normal probability distribution theories and Weibull cumulative probability theories.es.