• 제목/요약/키워드: thickness optimization

검색결과 772건 처리시간 0.027초

진동 특성을 고려한 회전 외팔보 형상의 최적화 (Shape Optimization of a Rotating Cantilever Beam Considering Its Modal Characteristics)

  • 윤영훈;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.643-648
    • /
    • 2000
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency of a rotating beam. By changing the thickness of the rotating beam, the modal characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized usefully for the design of rotating structures such as turbine blades and aircraft rotary wings.

  • PDF

가스압력을 이용한 자유벌징에서 성형양 최대화를 위한 두께 분포 최적화 (Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height)

  • 유준태;윤종훈;이호성;윤성기
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.899-904
    • /
    • 2014
  • 자유벌징에 있어서 성형 높이를 최대화하기 위하여 블랭크의 두께 분포를 최적화 하였으며, 등가정하중을 이용한 구조최적화법을 사용하였다. 두께형상은 부드러운 곡선으로 나타내기 위하여 베지어곡선을 사용하였고 제어점의 위치가 설계변수이며, 최대 변형률을 일정 값으로 제한하였다. 사용된 소재는 인코넬 718 이며 최적화된 두께분포로 가공된 블랭크를 이용한 자유벌징 시험을 수행하여 평판형 블랭크를 사용한 결과보다 22% 더 높은 성형 높이를 얻었다. 최적화결과에서 예측된 변형형상, 정점에서의 변형 경향, 두께분포가 실험에서 얻은 결과와 유사하여 최적화 과정의 유효성을 입증하였고, 최적화 결과가 실제 구현될 수 있음을 검증하였다.

Optimization approach of insulation thickness of non-vacuum cryogenic storage tank

  • MZAD, Hocine;HAOUAM, Abdallah
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권1호
    • /
    • pp.17-23
    • /
    • 2020
  • Cryogenic insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Insulations are listed in order of increasing performance and, generally, in order of increasing cost. The specific insulation to be used for a particular application is determined through a compromise between cost, ease of application and the effectiveness of the insulation. Consequently, materials, representative test conditions, and engineering approach for the particular application are crucial to achieve the optimum result. The present work is based on energy cost balance for optimizing the thickness of insulated chambers, using foamed or multi layered cryogenic shell. The considered insulation is a uniformly applied outer layer whose thickness varies with the initial and boundary conditions of the studied vessel under steady-state radial heat transfer. An expression of the optimal insulation thickness derived from the total cost function and depending on the geometrical parameters of the container is presented.

실험계획법에 의한 $CF_4/O_2$ 플라즈마 에칭공정의 최적화에 관한 연구 (Experimental Analysis and Optimization of Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process Plasma Etching Process)

  • 최만성;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.1-5
    • /
    • 2009
  • This investigation is applied Taguchi method and the analysis of variance(ANOVA) to the reactive ion etching(RIE) characteristics of $SiO_2$ film coated on a wafer with Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process mixture. Plans of experiments via nine experimental runs are based on the orthogonal arrays. A $L_9$ orthogonal array was selected with factors and three levels. The three factors included etching time, RF power, gas mixture ratio. The etching rate of the film were measured as a function of those factors. In this study, the etching thickness mean and uniformity of thickness of the RIE are adopted as the quality targets of the RIE etching process. The partial factorial design of the Taguchi method provides an economical and systematic method for determining the applicable process parameters. The RIE are found to be the most significant factors in both the thickness mean and the uniformity of thickness for a RIE etching process.

  • PDF

Optimization of thin shell structures subjected to thermal loading

  • Li, Qing;Steven, Grant P.;Querin, O.M.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.401-412
    • /
    • 1999
  • The purpose of this paper is to show how the Evolutionary Structural Optimization (ESO) algorithm developed by Xie and Steven can be extended to optimal design problems of thin shells subjected to thermal loading. This extension simply incorporates an evolutionary iterative process of thermoelastic thin shell finite element analysis. During the evolution process, lowly stressed material is gradually eliminated from the structure. This paper presents a number of examples to demonstrate the capabilities of the ESO algorithm for solving topology optimization and thickness distribution problems of thermoelastic thin shells.

유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구 (A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm)

  • 조백희
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF

퍼지 이론을 이용한 복합재 적층판의 최적설계 (Optimization of Composite Laminated Plate Using Fuzzy Set Theory)

  • 홍영기;이종호;구만회;우호길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.63-67
    • /
    • 1999
  • This paper presents the optimization of CFRP laminated rectangular plates using fuzzy theory. In optimization, thickness of CFRP lamina and fiber angle are taken as design variables, and total thickness of the plates is minimized under Tsai-Hill failure criterion. The uncertainties are entered by introducing fuzzy material strengths and then the objective and constraints are represented by a membership function of their own according to the intersection method. Various design results are presented for the CFRP laminated composites plates.

  • PDF

리클라이너 용 섹터기어의 파인 블랭킹 성형을 위한 금형의 최적화 (Optimization of Mold for Fineblanking Forming of Sector Gear for Recliner)

  • 이관영;남기우;문창권
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.53-58
    • /
    • 2011
  • To optimization of mlod for fineblanking forming of sector gear of recliner, it was analyzed the effect of clearance, V-ring height, V-ring position, blank holding force and counter punch force. In case of 0.003 mm of clearancs, the finest shear plane was obtained, but optimization between die and punch clearance was 0.005 mm. The height of V-ring was 0.7 mm. In case of increasing of hold force, the size of shear plane got better and the decrement of thickness became smaller. Both the size of shear plane and the decrement of thickness increased according to increasing of counter punch force.

위상 최적화를 이용한 능동 감쇠층의 설계 (Design of an Active Damping Layer Using Topology Optimization)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

필라멘트 와인딩 복합재 CNG 압력용기의 최적설계 (Optimal Design of Filament Wound Composite CNG Pressure Vessel)

  • 윤영복;조성원;하성규
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Abstract The optimization is performed to reduce the mass of CNG pressure vessel reinforced with composite materials in the hoop direction. An axisymmetric shell element which takes into account the layered liner and hoop composite materials is thus developed and incorporated into a program Axicom. The accuracy of the program is then verified using the 4 noded element in ANSYS. Three different cases of optimization are then performed using the Axicom: (1) uniform hoop thickness, (2) varying hoop thickness, and (3) varying the ply angles and accordingly the thickness. Compared with a traditional method, cases (2) and (3) were found to be very effective in reducing the thickness and cost of the hoop composite materials by about 80% without sacrificing the safety factors.