• 제목/요약/키워드: thickness of concrete

검색결과 1,482건 처리시간 0.026초

An approach of using ideal gradating curve and coating paste thickness to design concrete performance-(2) Experimental work

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.35-47
    • /
    • 2012
  • The ideal gradating curve is used in this study to estimate densified aggregate blended ratio and total surface area of aggregate, there by under assigned paste amount of concrete, and coating paste thickness can then be deduced. Four groups of concrete mixtures were prepared and the corresponding concrete properties, such as workability, compression strength, ultrasonic velocity, surface resistivity and chloride ion penetration, were measured and finally the results are interpreted in terms of "coating thickness". The result shows as the coating thickness of the concrete is higher than critical one, the coating thickness on aggregate does affect the workability, and whatever workability is required the superplasticizer can be adjusted to achieve the demand workability. Under a fixed paste quality at the same age, coating paste thickness is inversely proportional to the concrete properties, especially as the coating thickness gets thinner.

콘크리트 강도에 따른 바닥판 수직진동에 대한 적정 두께 제안 (The Adequate Slab Thickness Satisfied with the Vertical Floor Vibration Criteria for Several Concrete Compressive Strength)

  • 남상욱;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.659-662
    • /
    • 2003
  • Recently, the floor thickness in residence may not be satisfied with the floor vibration criteria although the thickness is evaluated by the serviceability requirements in current design provisions. Thus it is necessary to develop the procedure to determine slab thickness satisfied with the floor vibration criteria. In this study, We proposed the methods to determine the slab thickness satisfied with the vertical floor vibration criteria for several concrete compressive strength of flat plate floor systems. For this purpose Monte Carlo simulation procedure was adopted and both randomness inherent in young modulus of concrete and heel drop intensity were accounted.

  • PDF

피복두께에 따른 인장강성 거동에 관한 실험적 연구 (Experimental Study on Tension Stiffening Behavior with Variation of Cover Thickness)

  • 이기열;염환석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.641-646
    • /
    • 2000
  • This paper describes an experimental investigation on the influence of concrete cover thickness on tension stiffening behavior. Total 36 direct tension specimens were tested with variation of cover thickness. Three different concrete compressive strengths were also considered. After cracking, as the cover thickness becomes thinner and the concrete strength becomes higher, tensile stiffness is decreased. Thereby an increase in cover thickness results in increase of the tensile cracking load and tension stiffening effect. Also the increase in concrete strength results in sudden decrease in tension stiffening effect. Hence, the cover thickness and concrete strength are proved to be important factors in tension stiffening behavior.

  • PDF

콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가 (Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes)

  • 심종석;한덕전
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권2호
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

레이더의 주파수대역 변화에 따른 콘크리트 시편의 두께측정 (Measurement of Concrete Thickness at Different Frequency Ranges Using Radar)

  • 김유석;임흥철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.773-778
    • /
    • 1998
  • For imaging of concrete specimens using radar, the principles of radar, microwave, and the electromagnetic properties of concrete are discussed. Experimental data obtained from radar measurement of concrete specimens with no steel bars at three different frequency bandwidths of 2~3.4 GHz, 3.4~5.8 GHz and 8~12 GHz are processed to determine the thickness of the specimens. A signal processing scheme has been implemented to visualize the concrete specimens. The purpose of this study is to determine particular frequency range appropriate for measuring the thickness of concrete specimens using radar.

  • PDF

콘크리트 두께에 따른 질소투과계수 영향실험 (A Nitrogen Permeability Experiment with the Various Thickness of Concrete)

  • 이명규;정상화;김도현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.767-772
    • /
    • 2002
  • Using the diffusion cell, a experimental study on the nitrogen permeability was performed with the various thickness of concrete. This is important with relating to the carbonation study because the study of $CO_2$ diffusivity needs to use thin concrete specimen. Experimental results show that the nitrogen permeability is few affected by concrete specimen's thickness. But, specimens with 1cm thickness have a high permeability and deviation relatively. Also, specimens with w/c ratio 0.40 have a low permeability than 0.58. Consequently, the 3cm thickness is the better stable than others but the 1cm thickness specimens will be stable in case having a lot of specimens.

  • PDF

Fuzzy inference based cover thickness estimation of reinforced concrete structure quantitatively considering salty environment impact

  • Do, Jeong-Yun
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.145-161
    • /
    • 2006
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and watercement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

Guided wave analysis of air-coupled impact-echo in concrete slab

  • Choi, Hajin;Azari, Hoda
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.257-262
    • /
    • 2017
  • This study aims to develop a signal processing scheme to accurately predict the thickness of concrete slab using air-coupled impact-echo. Air-coupled impact-echo has been applied to concrete non-destructive tests (NDT); however, it is often difficult to obtain thickness mode frequency due to noise components. Furthermore, apparent velocity in concrete is a usually unknown parameter in the field and the thickness of the concrete slab often cannot be accurately measured. This study proposes a signal processing scheme using guided wave analysis, wherein dispersion curves are drawn in both frequency-wave number (f-k) and phase velocity-frequency ($V_{cp}-f$) domains. The theoretical and experimental results demonstrate that thickness mode frequency and apparent velocity in concrete are clearly obtained from the f-k and $V_{cp}-f$ domains, respectively. The proposed method has great potential with regard to the application of air-coupled impact-echo in the field.

폴리머 콘크리트 샌드위치 패널의 휨에 관한 실험적 연구 (An Experimental Study on the Flexural Deflection of Sandwich Panels with Polymer Concrete Facings)

  • 함형길;이석건;연규석;이현우;이종원
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.54-63
    • /
    • 1997
  • The purpose of this study is to analyse deformation properties by carrying out of flexure experimentations after fabricating polymer concrete sandwich panels which are composed of the polymer concrete in facing and expanded polystyren in cores, and to provide the basic data necessary to design, fabricate and operate the structure using these polymer concrete sandwich panels The analysed result of this study is summarized as follows. 1. The result of experiment on flexural deflection indicated that the thicker the thickness of both cores and facing of the polymer concrete sandwich panels, the smaller the deflection but the larger the ultimate shear force. In addition, it was also shown that the thicker the thickness of these cores and facing, the smaller the increasing rate of the deflection with the increase of load. 2. The breaking shape of polymer concrete sandwich panels by experiment on flexure was different according to the thickness of facing. When the facing was 5mm in thickness, it was the flexure while it was the flexure and shear failure when the facing was 5mm in thickness. As a result, it seems that the thickness of the facing has a great effect on failure. 3. There were induced not only the related formula between load, deflection and deformation according to the thickness of cores and facing on the basis of the flexure experiment, but also formula between load, horizontal displacement, Then, it seems that it will be possible to estimate the above elements by using these related formulas.

  • PDF

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.