• 제목/요약/키워드: thick laminates

검색결과 38건 처리시간 0.024초

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

강/복합재 이중구조 실린더 설계를 위한 유한요소 해석 (Finite Element Analysis for the Design of Fiber Reinforced Metal Cylinder)

  • 김태환;김위대;정철곤
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • 본 연구에서는 특수강과 복합재료를 사용한 이중구조 실린더의 설계를 위한 해석에 대해서 기술하였다. 특수강과 복합재의 이중구조는 제품의 특성에 적합한 물성을 유지하면서도 무게를 절감해 줄 수 있으며, 이로 인해 고탄성 저중량을 필요로 하는 각종 지상무기 산업분야와 항공분야, 스포츠 관련 분야 등에 점차 확대 적용되고 있다. 따라서 본 연구에서는 하나의 설계에 복합재의 적층각, 종류 등을 바꾸어 가며 이중구조의 설계에 가장 적합한 복합재 적용 방법을 찾기 위해 해석을 실시하였다. 또한 해석의 결과 값들의 비교를 통해 본 연구 설계목표에 가장 알맞은 복합재 적용 방법을 제시하였다.

임베디드 커패시터의 응용을 위해 다양한 기판 위에 평가된 BMN 박막의 특성 (Characteristics of BMN Thin Films Deposited on Various Substrates for Embedded Capacitor Applications)

  • 안경찬;김혜원;안준구;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.342-347
    • /
    • 2007
  • $Bi_6Mg_2Nb_4O_{21}(BMN)$ thin films were deposited at various substrates by sputtering system for embedded capacitor applications. BMN thin films deposited at room temperature are manufactured as MIM(Metal/Insulator/Metal) structures. Dielectric properties and leakage current density were investigated as a function of various substrates and thickness of BMN thin films. Leakage current density of BMN thin films deposited on CCL(Copper Clad Laminates) showed relatively high value ($1{\times}10^{-3}A/cm^2$) at an applied field of 300 kV/cm on substrates, possibly due to relatively high value of roughness(rms $50{\AA}$) of CCL substrates. 100 nm-thick BMN thin films deposited on Cu/Ti/Si substrates showed the capacitance density of $300 nF/cm^2$, a dielectric constant of 32, a dielectric loss of 2 % at 100 kHz and the leakage current density of $1{\times}10^{-6}A/cm^2$ at an applied field of 300 kV/cm. BMN capacitors are expected to be promising candidates as embedded capacitors for printed circuit board(PCB).

IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성 (Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester)

  • 이민선;김창일;윤지선;박운익;홍연우;백종후;조정호;박용호;장용호;최범진;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계 (Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite)

  • 신응수;홍을표;이기녕;김옥현
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

CFRP/GFRP 적층복합재의 두께가 혼합모드 균열거동과 AE에 미치는 영향 (The Effect of the CFRP/GFRP Composite Thickness on AE Characteristics and Mixed Mode Crack Behavior)

  • 윤유성;김다진솔;권오헌
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.9-14
    • /
    • 2014
  • Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.