• Title/Summary/Keyword: thick films

Search Result 948, Processing Time 0.027 seconds

$Al_2O_3$-PTFE Composite Thick Films Using Aerosol Deposition and Calculation of $Al_2O_3$ Contents

  • Kim, Hyeong-Jun;Kim, Yun-Hyeon;Nam, Song-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.112-112
    • /
    • 2010
  • 최근 세라믹스의 고온소결과정 없이 상온 후막제조가 가능한 에어로졸 데포지션법이 개발되어 이를 응용한 다양한 연구들이 진행되고 있다. 본 연구에서는 차세대 3차원 초고밀도 집적용연성(flexible)기판재료로서 $Al_2O_3$-PTFE(polytetrafluoroethylene) 복합체를 에어로졸 데포지션을 이용하여 상온제조 하였으며, 제조된 복합체 내의 $Al_2O_3$ 함량계산에 관한 연구를 진행하였다. 제조된 복합체는 기존의 세라믹만의 $Al_2O_3$ 후막에 비하여 PTFE의 첨가로 인한 잔류응력 감소효과가 있음이 확인되었으며 SEM, TEM 등 미세구조 분석을 통하여 충격고화 시 파우더의 미립화감소를 확인할 수 있었다. 또한, 공정의 최적화를 위한 분석 시 중요한 요소인 복합체 내의 세라믹 함량을 간편한 전기적 특성 측정을 통하여 계산하는 방법에 대한 연구를 진행하였다. 이를 위하여 이종 물질의 혼합에 관한 이론인 Hashin-Shtrikman bound theory와 3차원 정전장 해석 시뮬레이션을 병행하여 계산의 오차범위를 산출하고 실제 제조된 복합체 내의 $Al_2O_3$ 함량을 5 vol.% 이내의 오차로 측정할 수 있었다.

  • PDF

Crack Face Friction Effects on Mode II Stress Intensities for a Surface-Cracked Coating In Two-Dimensional Rolling $Contact^{\copyright}$ (구름접촉 하중시 코팅 표면에 발생한 균열면의 마찰을 고려한 모드II 전파거동에 관한 연구)

  • Moon Byung-Young;Kim Byeong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.159-167
    • /
    • 2005
  • This work focuses on the effects of crack free friction on Mode II stress intensity factors, $K_{II}$, for a vertical surface crack in a two-dimensional finite element model of TiN/steel subject to rolling contact. Results indicate that maximum $K_{II}$ values, which occur when the load is adjacent to the crack, may be significantly reduced in the presence of crack face friction. The reduction is more significant for thick coatings than for thin. Crack extension and increased layer thickness result in increased $K_{II}$ values. The effect of crack face friction on compressive $K_I$ values appears negligible. Comparative results are presented for $MoS_2/steel$ and diamond-like carbon(DLC)/Ti systems.

Grain Size Determination of Copper Film by Electron Backscatter Diffraction (EBSD를 이용한 구리박막의 결정립 크기 결정)

  • Kim, Su-Hyeon;Kang, Joo-Hee;Han, Seung Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.847-855
    • /
    • 2010
  • The grain size of a cross-section of $8{\mu}m$-thick copper film was determined by electron backscatter diffraction analysis. Grain size distribution histogram showed the presence of a large fraction of small-sized grains, and the mean grain size was significantly affected by handling of them. A cut-off grain size, below which all grains are ignored as noise and eliminated for the calculation of the mean value, should be three or four times as large as the step size. Due to the presence of small grains, the linear intercept method derived larger mean grain size, which depends less sensitively on the cut-off grain size than the equivalent circle diameter method.

Characterization of Ferroelectric $SrBi_2Ta_2O_9$ Thin Films Deposited by RF Magnetron Sputtering With Various Annealing Temperatures (RF magnetron sputtering으로 제조된 강 유전체 $SrBi_2Ta_2O_9$ 박막의 열처리 온도에 따른 특성 연구)

  • 박상식;양철훈;윤순길;안준형;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.202-208
    • /
    • 1997
  • Bi-layered SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si sibstrates by rf magnetron sputt-ering at room temperature and then were annealed at 75$0^{\circ}C$, 80$0^{\circ}C$ and 85$0^{\circ}C$ for 1 hour in oxygen at-mosphere. The film composition of SrBi2Ta2O9 was obtained after depositing at room temperature and annealing at 80$0^{\circ}C$. Excess 20mole% Bi2O3 and 30 mole% SrCO3 were added to the target to compensate for the lack of Bi and Sr in SBT film. 200 nm thick SBT film exhibited and dense microstructure, adielectric constant of 210, and a dissipation factor of 0.05 at 1 MHz frequency. The films exhibited Curie temperature of 32$0^{\circ}C$ and a dielectric constant of 314 at that temperature under 100 kHz frequency. The remanent polarization(2Pr) and the coercive field(2Ec) of the SBT films were 9.1 $\mu$C/$\textrm{cm}^2$ and 85 kV/cm at an applied voltage of 3V, resspectively and the SBT film showed a fatigue-free characteristics up to 1010 cy-cles under 5V bipolar pulse. The leakage current density of the SBT film was about 7$\times$10-7A/$\textrm{cm}^2$ at 150 kV/cm. Fatigue-free SBT films prepared by rf magnetron sputtering can be suitable for application to non-volatile memory device.

  • PDF

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF

Effect of Working Pressure on the Electrical and Optical Properties of ITZO Thin Films Deposited on PES Substrate with SiO2 Buffer Layer (공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향)

  • Joung, Yang-Hee;Choi, Byeong-Kyun;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.887-892
    • /
    • 2019
  • In this study, after 20nm-thick $SiO_2$ thin film was deposited by PECVD method on the PES substrate, which is known to have the highest heat resistance among plastic substrates, as a buffer layer, ITZO thin films were deposited by RF magnetron sputtering method to investigate the electrical and optical properties according to the working pressure. The ITZO thin film deposited at the working pressure of 3mTorr showed the best electrical properties with a resistivity of $8.02{\times}10^{-4}{\Omega}-cm$ and a sheet resistance of $50.13{\Omega}/sq.$. The average transmittance in the visible region (400-800nm) of all ITZO films was over 80% regardless of working pressure. The Figure of merit showed the largest value of $23.90{\times}10^{-4}{\Omega}^{-1}$ in the ITZO thin film deposited at 3mTorr. This study found that ITZO thin films are very promising materials to replace ITO thin films in next-generation flexible display devices.

Characteristics of SnO2 Thick Film Gas Sensors Doped with Catalyst (촉매가 첨가된 SnO2 후막형 가스센서의 특성 연구)

  • Lee, Don-Kyu;Yu, Yoon-Sick;Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.622-626
    • /
    • 2010
  • Cu doped $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $500^{\circ}C$ in air, respectively. Structural properties of $SnO_2$ by X-ray diffraction showed (110), (101) and (211) dominant tetragonal phase. The effects of catalyst Cu in $SnO_2$-based gas sensors were investigated. Sensitivity of $SnO_2$:Cu sensors to 2,000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas was investigated for various Cu concentration. The highest sensitivity to $CO_2$ gas and $H_2S$ gas of Cu doped $SnO_2$ gas sensors was observed at the 8 wt% and 12 wt% Cu concentration, respectively. The improved sensitivity in the Cu doped $SnO_2$ gas sensors was explained by decrease of electron depletion region in Cu and $SnO_2$ junction, and increase of reactive oxygen and surface area in the $SnO_2$.

Fabrication of $In_2O_3$-based oxide semiconductor thick film ozene gas sensor ($In_2O_3$ 계 산화물 반도체형 후막 오존 가스센서의 제조)

  • 이규정
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.19-24
    • /
    • 1999
  • $In_2O_3$-based thick films for the ozone detection of ppb range have been investigated. The $In_2O_3$ sensing layer is quite sensitive to ozone, but the saturated stable sensitivity cannot be obtained at the ozone exposure of 100 ppb for 5 min. The addition of $Fe_2O_3$ into $In_2O_3$ indicates some improvement in response time and sensitivity, but it seems the improvement is not good enough for real applications. Firing of $In_2O_3$:$Fe_2O_3$ powder induces remarkable improvement in response and recovery, although the sensitivity decrease. The sensing layer fired at $1300^{\circ}C$ and operated $550^{\circ}C$ shows excellent properties of fast response time, saturated stable sensitivity and rapid recovery characteristics to 100 ppb ozone exposure for 5 min. Especially, it shows the reproducibility of the sensor signal for repeated measurements and the linearity between the ozone concentration and the sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the ozone detection of ppb range.

  • PDF

Stretchable Deformation-Resistance Characteristics of Metal Thin Films for Stretchable Interconnect Applications I. Effects of a Parylene F Intermediate Layer and PDMS Substrate Swelling (신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 I. Parylene F 중간층 및 PDMS 기판의 Swelling에 의한 영향)

  • Park, Donghyun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • We investigated the feasibility of parylene F usage as an intermediate layer between a polydimethylsiloxane (PDMS) substrate and an Au thin-film interconnect as well as the swelling effect of PDMS substrate on the stretchable deformability of an Au thin film. The 150-nm-thick Au film, which was sputtered on a PDMS substrate without a parylene F layer, exhibited an initial resistance of $11.7{\Omega}$ and an overflow of its resistance at a tensile strain of 12.5%. On the other hand, the Au film, which was formed with a 150-nm-thick parylene F layer, revealed an much improved resistance characteristics: $1.21{\Omega}$ as its initial resistance and $246{\Omega}$ at its 30% elongation state. With swelling of PDMS substrate, the resistance of an Au film substantially decreased to $14.4{\Omega}$ at 30% tensile strain.