DOI QR코드

DOI QR Code

Grain Size Determination of Copper Film by Electron Backscatter Diffraction

EBSD를 이용한 구리박막의 결정립 크기 결정

  • Kim, Su-Hyeon (Grain Structure Control Group, Korea Institute of Materials Science) ;
  • Kang, Joo-Hee (Grain Structure Control Group, Korea Institute of Materials Science) ;
  • Han, Seung Zeon (Grain Structure Control Group, Korea Institute of Materials Science)
  • 김수현 (한국기계연구원 부설 재료연구소 결정제어연구그룹) ;
  • 강주희 (한국기계연구원 부설 재료연구소 결정제어연구그룹) ;
  • 한승전 (한국기계연구원 부설 재료연구소 결정제어연구그룹)
  • Received : 2010.04.15
  • Published : 2010.09.22

Abstract

The grain size of a cross-section of $8{\mu}m$-thick copper film was determined by electron backscatter diffraction analysis. Grain size distribution histogram showed the presence of a large fraction of small-sized grains, and the mean grain size was significantly affected by handling of them. A cut-off grain size, below which all grains are ignored as noise and eliminated for the calculation of the mean value, should be three or four times as large as the step size. Due to the presence of small grains, the linear intercept method derived larger mean grain size, which depends less sensitively on the cut-off grain size than the equivalent circle diameter method.

Keywords

Acknowledgement

Supported by : 재료연구소

References

  1. S. Piazolo, V. G. Sursaeva, and D. J. Prior, Mater. Sci. Forum 495-497, 213 (2005). https://doi.org/10.4028/www.scientific.net/MSF.495-497.213
  2. N. Gao, S. C. Wang, H. S. Ubhi, and M. J. Starink, J. Mater. Sci. 40, 4971 (2005). https://doi.org/10.1007/s10853-005-3867-6
  3. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, p.153-188, Taylor & Francis, London (2000).
  4. R. A. Schwarzer, D. P. Field, B. L. Adams, M. Kumar, and A. J. Schwartz, Electron Backscatter Diffraction in Materials Science, 2nd ed., p.1-20, Springer, New York (2009).
  5. A. K. Sikder, A. Kumar, P. Shukla, P. B. Zantye, and M. Sanganaria, J. Electron. Mater. 32, 1028 (2003). https://doi.org/10.1007/s11664-003-0085-3
  6. M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka, and T. Osaka, J. Electrochem. Soc. 153, C117 (2006). https://doi.org/10.1149/1.2149299
  7. W. H. The, L. T. Koh, S. M. Chen, J. Xie, C. Y. Li, and P. D. Foo, Microelectron. J. 32, 579 (2001). https://doi.org/10.1016/S0026-2692(01)00035-0
  8. D. S. Liu, C. Y. Chen, and Y. C. Chao, J. Electron. Mater. 35, 958 (2006). https://doi.org/10.1007/BF02692554
  9. G. Liu, Y. Kuo, S. Ahmed, D. N. Buckley, and T. Tanaka- Ahmed, J. Electrochem. Soc. 155, H432 (2008). https://doi.org/10.1149/1.2904937
  10. H. D. Merchant, M. G. Minor, and Y. L. Liu, J. Electron. Mater. 28, 998 (1999). https://doi.org/10.1007/s11664-999-0176-x
  11. T. Hatano, Y. Kurosawa, and J. Miyake, J. Electron. Mater. 29, 611 (2000). https://doi.org/10.1007/s11664-000-0054-z
  12. K. J. Mirpuri and J. A. Szpunar, J. Electron. Mater. 34, 1509 (2005). https://doi.org/10.1007/s11664-005-0158-6
  13. K.-K. Mirpuri, H. Wendrock, K. Wetzig, and J. Szpunar, Microelectron. Eng. 83, 221 (2006). https://doi.org/10.1016/j.mee.2005.08.008
  14. P. Sonnweber-Ribic, P. Gruber, G. Dehm, and E. Arzt, Acta Mater. 54, 3863 (2006). https://doi.org/10.1016/j.actamat.2006.03.057
  15. K. Mirpuri, H. Wendrock, S. Menzel, K. Wetzig, and J. Szpunar, Thin Solid Films 496, 703 (2006). https://doi.org/10.1016/j.tsf.2005.08.353
  16. S.-H. Lee and N.-J. Park, J. Kor. Inst. Met. & Mater. 45, 377 (2007).
  17. S.-H. Kim, J.-H. Kang, and S. Z. Han, Mater. Trans. 51, 659 (2010). https://doi.org/10.2320/matertrans.MG200910
  18. S. Zaefferer, P. Romano, and F. Friedel, J . Microscopy 230, 499 (2008). https://doi.org/10.1111/j.1365-2818.2008.02010.x
  19. EDAX-TSL, OIM Analysis 5.3 manual (2008).
  20. S. Suzuki, EBSD textbook: OIM analysis (B2.02).
  21. C.-H. Choi, H.-S. Nam, J.-H. Jeong, and D. N. Lee, J. Kor. Inst. Met. & Mater. 36, 1115 (1998).
  22. K. P. Mingard, B. Roebuck, E. G. Bennett, M. G. Gee, H. Nordenstrom, G. Sweetman, and P. Chan, Int. J. Ref. Metals & Hard Mater. 27, 213 (2009). https://doi.org/10.1016/j.ijrmhm.2008.06.009
  23. K. P. Mingard, B. Roebuck, E. G. Bennett, M. Thomas, B. P. Wynne, and E. J. Palmiere, J. Microscopy 227, 298 (2007). https://doi.org/10.1111/j.1365-2818.2007.01814.x
  24. Y. M. Park, D.-S. Ko, K.-W. Yi, I. Petrov, and Y.-W. Kim, Ultramicroscopy 107, 663 (2007). https://doi.org/10.1016/j.ultramic.2007.01.002
  25. J.-H. Kang and S.-H. Kim, Kor. J. Met. Mater. 48, 730 (2010).
  26. F. J. Humphreys, J. Mater. Sci. 36, 3833 (2001). https://doi.org/10.1023/A:1017973432592
  27. ASTM E112-96 (2003).
  28. E. E. Underwood, Quantitative Stereology, p.80-108, Addison-Wesley Pub. Co., Massachusetts (1970).
  29. Y. Takayama, N. Furushiro, T. Tozawa, H. Kato, and S. Hori, Mater. Trans. 32, 214 (1991). https://doi.org/10.2320/matertrans1989.32.214
  30. J.-H. Han and D.-H. Kim, Acta Metall. Mater. 43, 3185 (1995). https://doi.org/10.1016/0956-7151(95)00007-I