Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.3.027

Stretchable Deformation-Resistance Characteristics of Metal Thin Films for Stretchable Interconnect Applications I. Effects of a Parylene F Intermediate Layer and PDMS Substrate Swelling  

Park, Donghyun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.3, 2017 , pp. 27-34 More about this Journal
Abstract
We investigated the feasibility of parylene F usage as an intermediate layer between a polydimethylsiloxane (PDMS) substrate and an Au thin-film interconnect as well as the swelling effect of PDMS substrate on the stretchable deformability of an Au thin film. The 150-nm-thick Au film, which was sputtered on a PDMS substrate without a parylene F layer, exhibited an initial resistance of $11.7{\Omega}$ and an overflow of its resistance at a tensile strain of 12.5%. On the other hand, the Au film, which was formed with a 150-nm-thick parylene F layer, revealed an much improved resistance characteristics: $1.21{\Omega}$ as its initial resistance and $246{\Omega}$ at its 30% elongation state. With swelling of PDMS substrate, the resistance of an Au film substantially decreased to $14.4{\Omega}$ at 30% tensile strain.
Keywords
stretchable packaging; stretchable interconnect; metal thin film; Au film; PDMS; parylene;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Dow Corning, "Sylgard 184 Silicone Elastomer", http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf.
2 J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014).   DOI
3 H. A. Oh, D. Park, K. S. Han and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 91 (2015).   DOI
4 H. A. Oh, D. Park, S. J. Shin and T. S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015).   DOI
5 A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26, 3372 (2010).   DOI
6 K. Y. Chun, Y. Oh, J. Rho, J. H. Ahn, Y. J. Kim, H. R. Choi and S. Baik, "Highly Conductive, Printable and Stretchable Composite Films of Carbon Nanotubes and Silver", Nature Nanotechnol, 5, 853 (2010).   DOI
7 I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014).   DOI
8 S. Bhattacharya, A. Datta, J. M. Berg and S. Gangopadhyay, "Studies on Surface Wettability of Poly (dimethyl) Siloxane (PDMS) and Glass under Oxygen-plasma Treatment and Correlation with Bond Strength", J. Microelectromech. Syst., 14(3), 590 (2005).   DOI
9 K. S. Hwang, J. H. Park, J. H. Lee, D. S. Yoon and T. S. Kim, "Effect of Atmospheric-plasma Treatments for Enhancing Adhesion of Au on Parylene-c-coated Protein Chips", J. Korean Phys. Soc., 44, 1168 (2004).
10 M. J. Cordill, A. Taylor, J. Schalko and G. Dehm, "Fracture and Delamination of Chromium Thin Films on Polymer Substrates", Metall. Mater. Trans., 41A, 870 (2010).
11 S. P. Lacour, J. Jones, S. Wagner, T. Li and Z. Suo, "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE, 93(8), 1459 (2005).   DOI
12 N. Chou, J. Jeong and S. Kim, "Crack-free and Reliable Lithographical Patterning Methods on PDMS Substrate", J. Micromech. Microeng., 23, 125035 (2013).   DOI
13 C. Hassler, T. Boretius and T. Stieglitz, "Polymers for Neural Implants", J. Polymer Sci. B: Polymer Phys., 49(1), 18 (2011).   DOI
14 A. Khabari, and F. K. Urban. "Partially Ionized Beam Deposition of Parylene", J. Non-Cryst. Solids., 351(43), 3536 (2005)   DOI
15 N. Chou, S. Yoo and S. Kim, "A Largely Deformable Surface Type Neural Electrode Array Based on PDMS", IEEE Trans. Neural Syst. Rehabil. Eng., 21, 544 (2013).   DOI
16 N. Majid, S. Dabral and J. F. McDonald, "The Parylene-aluminum Multilayer Interconnection System for Wafer Scale Integration and Wafer Scale Hybrid Packaging", J. Electron. Mater., 18(2), 301 (1989)   DOI
17 Y. Chen, W. Pei, R. Tang, S. Chen and H. Chen, "Conformal Coating of Parylene for Surface Anti-adhesion in Polydimethylsiloxane (PDMS) Double Casting Technique", Sens. Actuators., A 189, 143 (2013).
18 S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003).   DOI
19 D. Y. Khang, J. A. Rogers and H. H. Lee, "Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics", Adv. Funct. Mater., 19(10), 1526 (2009).   DOI
20 J. Jones, S. P. Lacour, S. Wagner and Z. Suo, "Stretchable Wavy Metal Interconnects", J. Vacuum Sci. Technol., A 22(4), 1723 (2004).
21 X. P. Bi, N. L. Ward, B. P. Crum and W. Li, "Plasma-treated Switchable Wettability of Parylene-C Surface", Proc. 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Koyto, IEEE, 222 (2012).
22 T. Tatiana, T. Prodromakis and C. Toumazou, "Oxygen Plasma Induced Hydrophilicity of Parylene-C Thin Films", Appl. Surf. Sci., 261, 43 (2012).   DOI
23 V. Santucci, F. Maury and F. Senocq, "Vapor Phase Surface Functionalization under Ultra Violet Activation of Parylene Thin Films Grown by Chemical Vapor Deposition", Thin Solid Films, 518(6), 1675 (2010).   DOI
24 K. G. Pruden, K. Sinclair and S. Beaudoin, "Characterization of Parylene-N and Parylene-C Photooxidation", J. Polymer Sci., A 41(10), 1486 (2003).
25 L. Yang, N. Shirahata, G. Saini, F. Zhang, L. Pei, M. C. Asplund, D. G. Kurth, K. Ariga, K. Sautter, T. Nakanishi, V. Smentkowski and M. R. Linford, "Effect of Surface Free Energy on PDMS Transfer in Microcontact Printing and Its Application to ToF-SIMS to Probe Surface Energies", Langmuir, 25, 5674 (2009).   DOI
26 D. Park, K. S. Han and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-chip Bonding on Compliant Substrates", Mater. Trans. 58(8), 1217 (2017).   DOI
27 M. Golda, M. Brzychczy-Wloch, M. Faryna, K. Engvall and A. Kotarba, "Oxygen Plasma Functionalization of Parylene C Coating for Implants Surface: Nanotopography and Active Sites for Drug Anchoring", Mater. Sci. Eng. C., 33(7), 4221 (2013).   DOI
28 S. P. Lacour, J. Jones, Z. Suo and S. Wagner, "Design and Performance of Thin Metal Film Interconnects for Skin-like Electronic Circuits", IEEE Electron Device Lett., 25(4), 179 (2004).   DOI
29 D. Park, S. J. Shin and T. S. Oh, "Stretchable Characteristics of Thin Au Films on Polydimethylsiloxane Substrates with the Parylene Intermediate Layer for Stretchable Electronic Packaging", J. Electron. Mater., 1 (2017)
30 D. Park and T. S. Oh, "Comparison of Flip-chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017).   DOI
31 J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
32 D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008).   DOI
33 J. Y. Choi and T. S. Oh, "Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles", J. Electron. Mater., 43, 4464 (2014).   DOI
34 Y. Wang, Z. Li and J. Xiao, "Stretchable Thin Film Materials: Fabrication, Application, and Mechanics", J. Electron. Packag., 138, 020801 (2016).   DOI
35 S. Wagner, S. P. Lacour, J. Jones, I. H. Pai-hui, J. C. Sturm, T. Li and Z. Suo, "Electronic Skin: Architecture and Components", Physica E: Low-dimensional Systems and Nanostructures, 25(2), 326 (2004).   DOI
36 J. Y. Choi and T. S. Oh, "Contact Resistance Comparison of Flip-Chip Joints Produced with Anisotropic Conductive Adhesive and Nonconductive Adhesive for Smart Textile Applications", Mater. Trans., 56, 1711 (2015).   DOI
37 F. Xu and Y. Zhu, "Highly Conductive and Stretchable Silver Nanowire Conductors", Adv. Mater., 24, 5117 (2012).   DOI
38 A. P. Robinson, I. Minev, I. M. Graz and S. P. Lacour, "Microstructured Silicone Substrate for Printable and Stretchable Metallic Films", Langmuir 27, 4279 (2011).   DOI
39 O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope and W. O. Soboyejo, "Large Strain Deformation and Cracking of Nano-scale Gold Films on PDMS Substrate", Mater. Sci. Eng. B., 170, 32 (2010).   DOI
40 I. M. Graz, D. P. J. Cotton and S. P. Lacour, "Extended Cyclic Uniaxial Loading of Stretchable Gold Thin-films on Elastomeric Substrates", Appl. Phys. Lett., 94, 071902 (2009).   DOI
41 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix using Elastic Conductors", Science, 321, 1468 (2008).   DOI
42 S. Yao and Y. Zhu, "Nanomaterial-enabled Stretchable Conductors: Strategies, Materials and Devices", Adv. Mater., 27, 1480 (2015).   DOI
43 A. C. M. Kuo, "Poly (dimethylsiloxane)", Polymer Data Handbook, pp.411-435 (1999).
44 Y. Y. Hsu, C. Papakyrikos, D. Liu, X. Wang, M. Raj, B. Zhang and R. Ghaffari, "Design for Reliability of Multi-layer Stretchable Interconnects", J. Micromech. Microeng., 24, 095014 (2014).   DOI
45 Y. Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren and I. D. Wolf, "Polyimide-enhanced Stretchable Interconnects: Design, Fabrication, and Characterization", Thin Solid Films, 519, 2225 (2011).   DOI