• 제목/요약/키워드: thermosyphon

검색결과 117건 처리시간 0.023초

나노유체를 이용한 2상유동 2성분 루프형 열사이폰 (Two-Phase Two-Component Loop Thermosyphon with Nanofluid)

  • 이석호;박종찬;차경일;임택규;이충구;신동륜;박기호
    • 설비공학논문집
    • /
    • 제18권5호
    • /
    • pp.384-392
    • /
    • 2006
  • Reported are the heat transfer characteristics of a two-phase loop thermosyphon (TLT) with nanofluids consisted of nano-size silver particles and distilled water as the working fluid. The nanofluids used in the present study are dispersed solutions with various amount of silver nanoparticle in distilled water. It is seen from the present study that the heat transfer performance of the test TLT with nanofluids increased as much as about 2 times higher than that of a TLT with pure water as the working fluid based on same heat flux. The study also showed that there was no deterioration of the TLT performance with time, up to a period of 8 days of continuous operation which implies that there was no coagulation of nanoparticles within the working nanofluid during the operation of the test TLT.

Instability of a Two-Phase Loop Thermosyphon

  • Rhi, Seok-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.1019-1028
    • /
    • 2002
  • The instability of two-phase loop thermosyphons was investigated experimentally and analytically. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7 mm (no insert) to 0.71 mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT. With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT The analysis based on the Kelvin-Helmholtz instability theory seems to predict reasonable well the loop stability state of the TLT with experimentally determined constant factors.

Transient Characteristics of a Two-Phase Thermosyphon Loop for Multichip Module

  • Nam, Sang-Sig;Choi, Sung-Bong;Kim, Jae-Hee;Kwak, Ho-Young
    • ETRI Journal
    • /
    • 제20권3호
    • /
    • pp.284-300
    • /
    • 1998
  • A new thermosyphon cooling module (TSCM) has designed, fabricated and tested to cool the multi-chip module consists of a cold plate and an integrated condenser. With an allowable temperature rise of $56^{\circ}C$ on the surface of the heater, the cooling module TSCM can handle a heat flux of about 2.7 $W/cm^2$ using R11 as working fluid. The transient characteristics of the cooling module have been proved to be excellent: that is, when a heat load is applied inside of the system, steady state can be achieved within 10 to 15 minutes. It has been found that the length of the vapor channel between the cold plate and the condenser in addition to the ambient and the condenser temperatures affect the system performance.

  • PDF

2중관형 2상 열사이폰의 한계열유속 특성에 관한 연구 (A Study on Critical Heat Elux Characteristics in a Two-Phase Concentric-Tube Thermosyphon)

  • 김욱
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1419-1426
    • /
    • 2002
  • An experimental study was made to elucidate critical heat flux(CHF) characteristics in a two-phase concentric-tube thermosyphon. The experiment was performed by using saturated water, over the experimental range of configuration: inner diameter of heated outer tube D=12mm, outer diameter of unheated inner tube do=3 to 10mm and heated tube length L=100 to 1000mm. The experiment shows that the CHF is enhanced with increase in the inner tube diameter, and that the CHF decreases beyond a certain diameter of the inner tube. There is an optimum diameter for inner tube that maximizes the CHF, for each tube length and test liquid. The CHF maximum is about two to eight times as large as that without an inner tube. For a large inner tube, the CHF characteristics is similar to that for natural convective boiling in a vertical annular tube.

자연대류형 태양열 온수급탕 시스템의 열적성능에 관한 실험적 연구 (An Experimental Study on Thermal Performance of Thermosyphon Solar Hot Water System)

  • 전홍석;강용혁;윤환기;곽희열
    • 태양에너지
    • /
    • 제9권2호
    • /
    • pp.3-13
    • /
    • 1989
  • This study has been conducted to measure the performance of 5 thermosyphon solar water heaters suitable for Korean climate and to develop the most optimum system. Each system consists of two flat plate collectors of $4'{\times}8'$ (or three flat plate collectors of $3'{\times}6'$) connected in parallel and a storage tank of $300{\ell}$ capacity. Among the tested systems, the configuration that has two flat plate collectors of $4'{\times}8'$ and a horizontal tank-in-tank type storage unit with internal fins (C system) showed the highest performance.

  • PDF

루프형 2상 유동 열사이폰의 유동 불안정에 관한 실험적 연구 (Experimental Study on Instability of Two-Phase Loop Thermosyphon)

  • 이석호
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.408-414
    • /
    • 2002
  • The instability of two-phase loop thermosyphons (TLTs) was investigated experimentally. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7mm (no insert) to 0.71mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT.

루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구 (A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제26권4호
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

자연대류형 태양열 온수기용 맨틀 축열조의 열전달 현상에 관한 연구 (Heat Transfer in a Horizontal Mantle Heat Exchanger for a Thermosyphon-driven Flat Plate Collector)

  • 조현정;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권3호
    • /
    • pp.43-50
    • /
    • 2001
  • A horizontal mantle heat exchanger for a thermosyphon-driven SDHW(solar domestic hot water) was numerically simulated and fluid flow and heat transfer in the annulus of the mantle heat exchanger were quantitatively investigated. The Reynolds number, the location of the inlet, and the gap of the annulus were selected as the important design variables. The effects of the design variables on the heat transfer characteristics were thoroughly studied. Based on the numerical results, a correlation for predicting the heat transfer coefficient was suggested as the conclusion of this study.

  • PDF