• Title/Summary/Keyword: thermopneumatic-actuation

Search Result 4, Processing Time 0.02 seconds

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Microvalve (열공압 방식의 Polydimethylsiloxane 마이크로 밸브의 제작 및 특성)

  • 김진호;조주현;한경희;김영호;김한수;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • A normally open thermopneumaticc-actuated microvalve has been fabricated and their properties are investigated. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using polydimethylsiloxane (PDMS) and indium tin oxide (ITO) glass. The fabricated microvalves with in-channel configuration are easily integrated with other microfluidic devices on the same substrate. The fabrication process of thermopneumatic-actuated microvalvesusing PDMS is very simple and its performance is very suitable for a disposable lab-on-a-chip. The PDMS membrane deflection increases and the flow rates of the microchannel with microvalvels decrease as the applied power to the ITO heater increases. The powers at flow-off are dependent on the membrane thickness and the applied inlet pressure but are independent of the channel width of microvalves. The flow rate is well controlled by the switching function of ITO heater and the closing/opening times are around 20 sec and 25 sec, respectively.

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Micropump (열공압 방식의 polydimethylsiloxane 마이크로 펌프의 제작 및 특성)

  • 김진호;문민철;김주호;김영호;김한수;한경희;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.342-346
    • /
    • 2004
  • A thermopneumatic-actuated polydimethylsiloxane (PDMS) micropump has been fabricated and their properties are characterized. The diffusers are used as a flow-rectifying element instead of passive check valves. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using PDMS and indium tin oxide (ITO) glass. We presented the PDMS micropump that is easily integrated with the in-channel PDMS microvalves on the same substrate. The flowrate of the micropump increases linearly as the applied pulse voltage to the ITO heater increases. The fabricated ITO heater resistance is 6.54k$\Omega$. The peak of the flow rate is observed at the duty ratio of 10% for the applied pulse voltage of 55V at 6Hz and the maximum flow rate of 78nl/min is measured.

Development of Micro-bellows Actuator Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발)

  • Kang H.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF

A Study on the Fabrication of a Thremopneumatic micropump (열공압형 마이크로 펌프의 제작에 관한 연구)

  • Kim, Y.S.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1960-1962
    • /
    • 1996
  • A thermopneumatic micropump with two micronozzles has been fabricated and tested. The actuator consists of a p+ diaphragm and a pyrex glass on which a microheater is deposited. Two micronozzles are fabricated on either side of a single silicon wafer and behave as a dynamic passive valves. The actuator and the micronozzle are assembled to make a micropump. The center deflection of the actuator diaphragm to step voltage input has been measured. The dynamic test hag been performed by measuring the center deflection of the diaphragm under various input voltages and duty ratios. Also dynamic pumping test is performed. The measured built-up pressure between inlet and outlet of the micropump is 80 Pa for the actuation at 20V, 10 Hz.

  • PDF