• Title/Summary/Keyword: thermopile sensor

Search Result 43, Processing Time 0.032 seconds

Fabrication of the thermopile using SOI structure (SOI 구조를 이용한 열전쌍열(Thermopile) 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this paper, a thermopile which is applied to wide uses of temperature measuring was fabricated and its characteristic was improved by appling SOI structure to the fabrication. We improved characteristic of the thermopile by using single crystal silicon strips that has high seebeck coefficient and dielectric isolating the silicon strips from substrate with silicon dioxide film which dramatically decrease thermal conductivity between hot and cold junction compared to a silicon strip which was fabricated by ion implantation. The thermopile consists of 17 p-type single crystal silicon strips and 17 n-types by serial connection. The result of electromotive force measuring showed very good characteristic as 130mV/K when temperature difference between the two ends of the thermopile occurs by applying light on the thermopile fabricated with silicon strips of $1600{\mu}m$ length, $40{\mu}m$ width, $1{\mu}m$ thickness.

The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure (빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계)

  • Lee, Jun-Bae;Kim, Tae-Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • This paper presents the multi-objective optimal design of thermopile sensor having beam or membrane structure. The thermopile sensor is composed of $Si_{3}N_{4}/SiO_{2}$ dielectric membrane, Al-polysilicon thermocouples and $RuO_{2}$ thin film for black body. The sensing method is based on the Seebeck effect which is originated from the temperature difference of the two positions, black body and silicon rim. The objective functions of the presented design are sensitivity, detectivity and thermal time constant. The modelling of the sensor is proposed including the package. The multi-objective optimization technique is applied to the design of the sensor not only inspecting the modelling equation but also simulating mathematical programming method. Especially, fuzzy optimization technique is adapted to get the optimal solution which enables the designer to reach the more practical solution. The design constraint of the voltage output originated from the change of the environmental temperature is included for practical use.

  • PDF

Feasibility study on the development of noncontact temperature sensor using infrared optical fiber (적외선 투과 광섬유를 이용한 비접촉식 온도 센서 개발을 위한 기초 연구)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Chung, Soon-Cheol;Tack, Gye-Rae;Jun, Jae-Hoon;Lee, Bong-Soo;Son, Sang-Hee;Cho, Seung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.179-185
    • /
    • 2006
  • We have developed a noncontact temperature sensor using a silver halides infrared optical fiber. An infrared radiation from a heat source is transferred by a silver halides infrared optical fiber and measured by infrared sensors such as a thermopile and a thermal optical power-meter. The relationships between the temperature of a heat source and the output voltage of the thermopile and the optical power of a thermal optical power-meter are determined. The measurable temperature range using a thermopile and a thermal optical power-meter are from 100 to $750^{\circ}C$ and from 30 to $750^{\circ}C$ respectively. It is expected that a noncontact temperature sensor using infrared optical fiber can be developed for medical and industrial usages based on the results of this study.

Fabrication and Characterization of Thermopile on Low-Stress $Si_3N_4$ Membrane for Microspectrometer Infrared Sensor (마이크로 스펙트로미터 적외선 센서용 저응력 $Si_3N_4$ Membrane 상에서의 Thermopile 제조 및 특성)

  • Choi, Gong-Hee;Park, Kwang-Bum;Park, Joon-Shik;Chung, Kwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.781-784
    • /
    • 2005
  • Twenty four types of thermopile for micro spectrometer infrared sensors were fabricated on low-stress $Si_3N_4$ membranes with $1.2{\mu}m-thickness$ using MEMS technology. Poly-Si thin film with thickness of 3500 ${\AA}$ as the first thermocouple material, was deposited by LPCVD method. And aluminum thin film with thickness of 6000 ${\AA}$ as the second thermocouple material, was deposited by sputtering method. Thermopile were designed and fabricated for optimum conditions by five parameters of thermocouple numbers (16 ${\sim}$ 48), thermocouple line widths (10 ${\mu}m$ ${\sim}$ 25 ${\mu}m$), thermocouple lengths (100 ${\mu}m$ ${\sim}$ 500 ${\mu}m$), membrane areas ($1^2\;mm^2$ ${\sim}$ $2.5^2\;mm^2$) and junction areas (150 ${\mu}m^2$ ${\sim}$ 750 ${\mu}m^2$), respectively. Electromotive forces of fabricated thermopile were measured 1.1 mV ${\sim}$ 7.4 mV at $400^{\circ}C$. It was thought that measurement results could be used for thermopile infrared sensors optimum structure for micro spectrometers.

  • PDF

A Front-side Dry-Etched Thermopile Detector with 3-5 $\mu m$ Infrared Absorber and Its Application to Novel NDIR $CO_2$ Gas Sensors (3-5 $\mu m$ 적외선 흡수체를 가진 전면 건식 식각된 서모파일과 NDIR $CO_2$ 가스 센서의 응용)

  • Yoo, Kum-Pyo;Kim, Si-Dong;Choi, Woo-Seok;Singh, V.R.;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1470-1471
    • /
    • 2008
  • We present a front-side micromachined thermopile with high sensitivity in the 3-5${\mu}m$ window, and discuss its application to a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. The micromachined thermopile shows a measured sensitivity of 30 mV/W and a $D^*$ of $0.3{\times}10^8cm^{\surd}Hz/W$. Using this newly fabricated thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Feasibility study on the development of respiration sensor using a chalcogenide optical fiber (Chalcogenide 광섬유를 이용한 호흡측정 센서 개발을 위한 기초 연구)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Oh, Jeong-Eun;Lee, Bong-Soo;Tack, Gye-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.331-336
    • /
    • 2007
  • In this study, we have fabricated an infrared optical fiber based sensor which can monitor the respiration of a patient. The design of a chalcogenide optical fiber based sensor is suitable for insertion into a high electro-magnetic field environment because the sensor consists of low cost and compact mid-infrared components such as an infrared light source, a chalcogenide optical fiber and a thermopile sensor. A fiber-optic respiration sensor is capable of detecting carbon dioxide ($CO_{2}$) in exhalation of a patient using the infrared absorption characteristics of carbon gases. The modulated infrared radiation due to the presence of carbon dioxide is guided to the thermopile sensor via a chalcogenide receiving fiber. It is expected that a mid-infrared fiber-optic respiration sensor which can be developed based on the results of this study would be highly suitable for respiration measurements of a patient during the procedure of an MRI.

Measurements of temperature distribution using an infrared optical fiber during radiofrequency ablation (적외선 투과 광섬유를 이용한 고주파 열치료 과정에서의 온도분포 측정)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Cho, Dong-Hyun;Jang, Kyoung-Won;Shin, Sang-Hun;Lee, Bong-Soo;Tack, Gye-Rae;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.397-405
    • /
    • 2008
  • In this study, we have measured temperature distribution using infrared optical fibers during radiofrequency ablation (RFA). Infrared radiations generated from the water around inserted electrode are transferred by silver halide optical fibers and are measured by a thermopile sensor. Also, the output voltages of a thermopile sensor are compared with those of the thermocouple recorder. It is expected that a noncontact temperature sensor using an infrared optical fiber can be developed for the temperature monitoring during RFA treatments based on the results of this study.

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.