• Title/Summary/Keyword: thermophilus

Search Result 243, Processing Time 0.024 seconds

Studies on Stability and Quantitation of a Mixed Preparation of Lactic Acid Bacteria (유산균(乳酸菌) 혼합(混合) 제제(製劑)의 안정성(安定性) 및 분리(分離) 정량(定量)에 관한 연구)

  • Kim, Jung-Woo;Choi, Eung-Chil;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.1
    • /
    • pp.39-42
    • /
    • 1984
  • To examine stability and a separate quantitative method of a mixed preparation of lactic acid bacteria, a capsule containing Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophilus was suspended and diluted in sterile water. After the diluted suspension was spread on three media of tryptone glucose extract agar, MRS agar and MRS-sucrose agar, their colonies appeared and were counted. The viable counts exceeded the minimum number of the three bacteria and showed that the mixed preparation was stable at least for 18 months. The results also showed that a separate quantitation of viable cells of the each strain was feasible.

  • PDF

Viability of Probiotic Bacteria in Yogurt Supplemented with Enzyme-Bioconverted Ginseng, Ascorbic Acid, and Yeast Extract (효소처리인삼, 아스코르브산, 효모추출물이 첨가된 요구르트에서 프로바이오틱 세균의 활성)

  • Choi, Suk-Ho;Lim, Young-Soon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.57-68
    • /
    • 2019
  • The effects of yogurt supplementation with enzyme-bioconverted ginseng (EBG), ascorbic acid, and yeast extract on the bacterial counts of Streptococcus thermophilus, Lactobacillus acidophilus LA-5, and Bifidobacterium BB-12 were investigated to develop healthy yogurts with high probiotic counts during storage. In addition, the colors and viscosities of the yogurts were determined. EBG, ascorbic acid, and yeast extract did not affect S. thermophilus counts. EBG and ascorbic acid enhanced the viabilities of L. acidophilus LA-5 and Bifidobacterium BB-12 during storage. Yeast extract improved growth of L. acidophilus LA-5 and Bifidobacterium BB-12 during fermentation. EBG turned the yogurt into brown color. We conclude that supplementation of yogurt with EBG, ascorbic acid, and yeast extract may enhance its health-promoting functions by increasing the viability of probiotics, which can thus promote consumption of the yogurt.

젖산생성균의 .betha.-galactosidase의 생화학 및 분자생물학적 특성

  • 민해기
    • The Microorganisms and Industry
    • /
    • v.19 no.1
    • /
    • pp.8-17
    • /
    • 1993
  • 젖산생성균의 .betha.-gal의 생성과 Bif. longum KCTC 3215에 의한 .betha.-gal 생산, 정제 및 특성에 관한 연구와 젖산생성균의 .betha.-gal 유전자의 클로닝 및 대장균에의 발현과 Str.thermophilus SKD 1006의 Lac Z 유전자를 비교 분석하였다.

  • PDF

Physicochemical Characteristics and Antioxidant Capacity in Yogurt Fortified with Red Ginseng Extract

  • Jung, Jieun;Paik, Hyun-Dong;Yoon, Hyun Joo;Jang, Hye Ji;Jeewanthi, Renda Kankanamge Chaturika;Jee, Hee-Sook;Li, Xiang;Lee, Na-Kyoung;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.412-420
    • /
    • 2016
  • The objective of this study was to investigate characteristics and functionality of yogurt applied red ginseng extract. Yogurts added with red ginseng extract (0.5, 1, 1.5, and 2%) were produced using Lactobacillus acidophilus and Streptococcus thermophilus and stored at refrigerated temperature. During fermentation, pH was decreased whereas titratable aicidity and viable cell counts of L. acidophilus and S. thermophilus were increased. The composition of yogurt samples was measured on day 1, an increase of red ginseng extract content in yogurt resulted in an increase in lactose, protein, total solids, and ash content, whereas fat and moisture content decreased. The pH value and cell counts of L. acidophilus and S. thermophilus were declined, however titratable acidity was increased during storage period. The antioxidant capacity was measured as diverse methods. During refrigerated storage time, the value of antioxidant effect was decreased, however, yogurt fortified with red ginseng extract had higher capacity than plain yogurt. The antioxidant effect was improved in proportion to concentration of red ginseng extract. These data suggests that red ginseng extract could affect to reduce fermentation time of yogurt and enhance antioxidant capacity.

Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Jeon, Hye-Lin;Eom, Su Jin;Yoo, Mi-Young;Lim, Sang-Dong;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.427-434
    • /
    • 2016
  • Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

Effect of Spirulina on Growth of Lactic Acid Bacteria (스피루리나가 유산균의 증식에 미치는 영향)

  • Son, Chan-Wok;Shin, Yu-Mi;Sim, Hyun-Jung;Kim, Mi-Yeon;Kim, Mee-Ree
    • Korean journal of food and cookery science
    • /
    • v.23 no.6
    • /
    • pp.968-976
    • /
    • 2007
  • This experiment was carried out to investigate the effects of spirulina powder on the growth properties of lactic acid bacteria in reconstituted skim milk. The spirulina powder supplemented to S. thermophilus and L acidophilus slightly stimulated lactic acid production. In addition, the growth and acid production of L. bulgaricus were enhanced by the addition of spirulina powder. When the spirulina powder was added to reconstituted skim milk at the level of 1%, the mixed cultures of S. thermophilus and L. bulgaricus showed higher numbers of viable cells and higher acid production than the other cultures. The effects of the addition amounts of spirulina powder (1%, 2% and 3%) to the reconstituted skim milk on the growth properties of the mixed cultures of S. thermophilus and L. bulgaricus were evaluated. The pH of the skim milk with added spirulina powder was lower than that of the control, but the amount of spirulina did not have a significant affect. The titratable acidity increased with the incubation time until 12 hr. The number of viable cells in the skim milk with added spirulina increased according to the amount of spirulina. Thus, the spirulina was effective for the increasing lactic acid bacteria in yoghurt.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

Effects of Phosphates on the Growth of Lactic Acid Bacteria (인산(燐酸) 염(鹽)이 유산균(乳酸菌)의 생장(生長)에 미치는 영향(影響))

  • Yu, Tae-Jong;Kim, Il-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.200-205
    • /
    • 1979
  • Effects of monosodium phosphate, disodium phosphate, trisodium phosphate, ${\alpha}-polygel$, sodium ultrametaphosphate and sodium tripolyphosphate on the growth of bacteria, pH and acidity in single culture of Lactobacillus bulgaricus and mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus were investigated. Phosphates exerted definite effect in enhancing the growth of the bacteria and acidity of the fermented milk. For the single-culture of Lactobacillus bulgaricus monosodium phosphate and sodium tripolyphosphate were most effective in terms of bacterial growth and acidity, whereas for the mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus monosodium phosphate and disodium phosphate showed the best results. In the presence of the phosphates, particularly of trisodium phosphate, the decrease of viable count of bacteria in fermented milk during storage was reduced significantly. The stability of the fermented milk prepared with the mixed-culture of Lactobacillus bulgaricus and Streptococcus thermophilus was improved by the addition of phosphates, particularly of monosodium phosphate.

  • PDF

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.

Changes of Oligosaccharide and Free Amino Acid in Soy Yogurt Fermented with Different Mixed Culture (혼합균주를 이용한 대두유의 발효에 따른 당 및 유리아미노산의 변화)

  • Kim, Cherl-Hyun;Shin, Yong-Kook;Baick, Seung-Chun;Kim, Soo-Kwang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.739-745
    • /
    • 1999
  • This study was carried out to investigate the oligosaccharide and amino acid utilization by mixed cultures during soy yogurt fermentation. Three types soy yogurt were prepared by fermenting with Lactobacillus acidophilus and Streptococcus thermophilus, Streptococcus thermophilus and Saccharomyces uvarum, Lactobacillus acidophilus and Saccharomyces uvarum. The utilized amount of oligosaccharide and amino acid was determined by HPLC during the fermentation period. The oligosaccharide and amino acid utilization efficiency of S. thermophilus and Sac. uvarum was greater than the other mixed cultures. It was found that Sac. uvarum produced enzymes which can convert oligosaccharide and common sugars in soy milk into glucose, galactose and fructose which can be fermented by L. acidophilus and S. thermophilus, and in turn stimulated acid production and amino acid utilization of the latter.

  • PDF