• Title/Summary/Keyword: thermophilic Bacillus sp.

Search Result 46, Processing Time 0.023 seconds

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Production of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus sp. TA-11 in the Recombinant E. coli (재조합 대장균에서 호알칼리성,고온성 Bacillus sp. TA-11의 세포내 Invertase의 생산)

  • Yi, Sung-Hun;Lee, Dae-Hyung;No, Jae-Duck;Lee, Jae-Won;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • The intracellular invertase gene of alkalophilic and thermophilic Bacillus sp. TA-11 which was isolated from compost was cloned and expressed in E. coil HB101 using pUC19 as a vector. The invertase of the recombinant E. coli (pYC 17) was maximally produced when it was incubated at 37$^{\circ}C$ for 9 h in a SY medium containing 0.25% sucrose, 0.5% yeast extract, 0.1% each of $K_2HPO_4$ and $KH_2PO_4$, with an initial pH of 8.0. The final enzyme activity under the above condition was 47.7 U per ml of cell-free extract.

A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil (한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별)

  • Kim, Ji-Eun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.419-426
    • /
    • 2006
  • A thermophilic microorganism, strain JE 375, which produces a thermostable protease, was isolated from soil and compost in Korea. This gram-positive, rod-shaped, catalase positive, motility positive, and hemolysis ${\beta}$ containing organism was implicated in glucose fermentation, mannitol fermentation, xylose oxidation, aerobic activity and spore formation. The color of the colony was yellowish white. The temperature range for growth at pH 6.5 was between 55 and $70^{\circ}C$, with an optimum growth temperature of $65^{\circ}C$. This result confirmed the strain JE 375 as a thermophilic microorganism. The enzyme was produced aerobically at $65^{\circ}C$ during 20 hr in a medium (pH 6.5) containing 1% trypton. 1% maltose, 0.5% yeast extract and 1% NaCl. The 16S rDNA of strain JE 375 had 97.6% sequence similarity with the 16S rDNA of Bacillus caldoxyloyticus. On the basis of biochemical and physiological properties and phylogenetic analysis, we named the isolated strain as Bacillus sp. JE 375. The thermostable protease from Bacillus sp. JE 375 had been partially purified and characterized. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography as 55 kDa and its optimal temperature was $60^{\circ}C$. The enzyme showed its highest activity at pH 7.5 and was stable from pH 7.0 to 8.0.

Purification and Characterization of a Xylanase from Bacillus sp. KK-1

  • Kim, Dae-Joon;Yoon, Ki-Hong;Kim, Seung-Ho;Cho, Ki-Haeng;Min, Bon-Hong
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.348-352
    • /
    • 1995
  • A thermophilic Bacillus sp. strain KK-1 isolated from soil produced an extracellular xylanase. From the culture supernatant of Bacillus sp., the xylanase was purified to homogeneity by ammonium sulfate precipitation and DEAE-Sephadex A-50 chromatography. The molecular weight of the purified xylanase was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography. The apparent $K_m$ values for xylanase, using oat spelt xylan and birchwood xylan as substrates, were 7.1 mg/ml and 3.2 mg/ml, and $V_{max}$ values were $27.0\;{\mu}mol{\cdot}min^{-1}{\cdot}mg^{-1}$ and $29.0\;{\mu}mol{\cdot}min^{-1}{\cdot}mg^{-1}$, respectively. The xylanase hydrolyzed oat spelt xylan to mostly xylobiose, xylotriose, and xylose. The amino acid composition indicated that the xylanase contained high amounts of amino add residues of glutamic acid and glutamine (Glx) and aspartic acid and asparagine (Asx).

  • PDF

Regulation of $\beta$-Galactosidase Biosynthesis in Alkalophilic, Thermophilic Bacillus sp. TA-11 (호알칼리성, 고온성 Bacillus sp. TA-11의 $\beta$-galactosidase의 생합성 조절)

  • Lee, Jong-Su;Lee, Hyang-Sook
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.13-17
    • /
    • 1992
  • Regulation of $\beta$-galactosidase biosynthesis was studied with alkalophilic, thermophilic Bacillus sp. TA-11. Biosynthesis of the enzyme was effectively induced by lactose and some low level by isoprophyl-$\beta$-D-thiogalactopyranoside(IPTG). When 30mM glucose was added at the different intervals to the culture that had been in contact with lactose, the different levels of the enzyme synthesis were observed. So, this suggests that glucose interfered with the entry of the lactose into the cells.The glucose inhibitory effect was not relieved by adding cAMP to the culture.

  • PDF

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

Thermostable $\alpha$-Amylase Production by Thermophilic Bacillus sp. TR-25 lsolated from Extreme Enviroment (극한환경에서 분리한 고온성 Bacillus sp. TR-25에 위한 내열성 $\alpha$-amylase의 생산)

  • 노석범;손홍주;이종근
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.30-38
    • /
    • 1997
  • For screening thermostable $\alpha$-amylase from thermophiles, various samples from extreme environments such as hot spring and sewage near them, and compoat, wereexamined microbial growth in enrichment culture medium at 55$\circ$C on the assumption that enzymes from thermophiles are inevitable thermostable. One strain showing higher $\alpha$-amylase activity was pure cultured and designated as Bacillus sp. TR-25 from the results of morphological, cultural and physiological characteristics. The most important carbon sourses for the enzyme production were soluble starch, dextrin, potato starch and corn starch. Glucose and fructose had a catabolite repression on the enzyme production. The good nitrogen sources for the enzyme production were yeat extract, nutrient broth, tryptone, corn steep liquor and ammonium sulfate. The enzyme production was accelerated by addition of CaCl$_{2}$. $\cdot $ H$_{2}$O. The optimal medium composition for the enzyme production was soluble starch 2.0%, yeast extract 0.55, CaCl$_{2}$ $\cdot $ 2H$_{2}$O 0.015, Tween 80 0.001%, pH8.0, respectively. In jar fermenter culture, this strain shows a rapid growth and required cheaper carbon and nitrogen source. These properties are very useful to fermentation industry. The $\alpha$-amylase of this strain demonstrated a maximum activity at 80$\circ$C, pH 5.0, respectively. And calcium ion did not improve thermostability of the enzyme. At 10$0^{\circ}C$, this enzyme has 235 of relative activity. Transformation was carried out by thermophilic Bacillus sp. TR-25 genomic DNA. As a result, the transformant has increased thermostable $\alpha$-amylase activity.

  • PDF

Isolation of Aerobic Bacteria and Its Efficacy for the Treatment of Korean Food-Wastes (한식 잔반처리를 위한 호기성 미생물의 분리 및 그 분해효과)

  • 김광현;김지연;이광배
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.510-517
    • /
    • 1999
  • For the treatment of Korean food-wastes, three mesophilic and one thermophilic bacteria were isolated from soil and fermented fertilizers. The thermophilic Streptomyces sp. strain WF021 produced two enzymes which were a protease and a lipase at 55$^{\circ}C$. The mesophilic Bacillus sp. strain WF024 produced four enzymes which were a protease, a lipase, a amylase and a cellulase when the strain was grown both at 3$0^{\circ}C$ and 55$^{\circ}C$. The Bacillus sp. PY123 had produced three enzymes which were a protease, a cellulase and a lipase at 3$0^{\circ}C$. The Bacillus sp. strain CM1 produced three enzymes which were a protease, a amylase, and a cellulase at 3$0^{\circ}C$. The bacteria were grown in media containing 6% NaCl at least and did not have antagonism each other. The four isolates treated much more food-wastes than referance strains did. In a flask without aeration, three reference strains treated 15.4% of food-wastes, while four isolates treated 23.7% of food-wastes. In a flask with aeration, food-wastes were treated 67.3% by four isolates, and 64.3% by three reference strains, but 53.9% without bacteria. However, food-wastes were treated about 78% in a 200$\ell$-reactor made by Siwon Co., while 65.8% in a 20$\ell$-reactor made by Sanyo Co.

  • PDF

Production of $\beta$-Galactosidase from Alkalophilic, Thermophilic Baillus sp. TA-11 (호알칼리성, 고온성 Bacillus sp. TA-11에 의한 $\beta$-Galactosidase의 생산)

  • 최영준;이종수
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.400-405
    • /
    • 1994
  • The conditions for ${\beta}$-galactosidase production from alkalophilic, thermophilic Bacillus sp. TA-11 were investigated. The maximal enzyme production was obtained when the strain was cultured at $50^{\circ}C$ for 5 days with fed-batch culture in the optimal medium containing 1.5% lactose, 0.6% yeast extract 0.15% $K_2HP0_4$and initial pH 9.5, and then final enzyme activity under the above conditions was 5200 unit/ml of cell free extract.

  • PDF

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.