• 제목/요약/키워드: thermophilic

Search Result 421, Processing Time 0.026 seconds

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis

  • Guo, Yan;Zhang, Jinliang;Deng, Changyan;Zhu, Nengwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1045-1054
    • /
    • 2012
  • The phylogenetic diversity of the bacteria in hot composting samples collected from three spatial locations was investigated by molecular tools in order to determine the influence of gradient effect on bacterial communities during the thermophilic phase of composting swine manure with rice straw. Total microbial DNA was extracted and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. The superstratum sample had the highest microbial diversity among the three samples which was possibly related to the surrounding conditions of the sample resulting from the location. The results showed that the sequences related to Bacillus sp. were most common in the composts. In superstratum sample, 45 clones (33%) and 36 clones (27%) were affiliated with the Bacillus sp. and Clostridium sp., respectively; 74 clones (58%) were affiliated with the Clostridium sp. in the middle-level sample; 52 clones (40%) and 29 clones (23%) were affiliated with the Clostridium sp. and Bacillus sp. in substrate sample, respectively. It indicated that the microbial diversity and community in the samples were different for each sampling site, and different locations of the same pile often contained distinct and different microbial communities.

Costs analysis of carcass burial site construction: Focused on the foot and mouth disease 2011, South Korea

  • Kim, Mi Hyung;Ko, Chang-Ryong;Kim, Geonha
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • Many burial sites were constructed in a short time to prevent the rapid spread of foot and mouth disease in infected livestock carcasses in Korea. More than 4,700 carcass burial sites were constructed in 2011. Approximately seven million poultry and 3.5 million livestock, including cattle and swine, were buried on farmland. Some burial sites were suspected of leachate leakage and were excavated and carcasses redisposed in a bioaugmentation process. This study performed interviews in order to understand the economic issues related to carcass burial and redisposal. The internal data from local government and the assumption data from online sites were analyzed to evaluate the costs; the focus was on burial site construction. The results showed that the local government paid $4.7 and $10.9 per carcass for traditional burial and redisposal. The comparable costs shown online were $4.5. This study found that the standard operating procedures should be carried out to reduce environmental impact and avoid additional costs. We estimated that the cost could be reduced by the advance preparations of materials against the emergency situations such as catastrophe of epidemics. In addition, the innovative technology for the stabilization of carcasses should be established through a future study.

Isolation and Culture Properties of a Thermophilic Agarase-Producing Strain, Microbulbifer sp. SD-1

  • Kim, Do-Kyun;Jang, Yu-Ri;Kim, Kyoung-Hoon;Lee, Mi-Nan;Kim, A-Ra;Jo, Eun-Ji;Byun, Tae-Hwan;Jeong, Eun-Tak;Kwon, Hyun-Ju;Kim, Byung-Woo;Lee, Eun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.186-191
    • /
    • 2011
  • An agar-degrading enzyme-producing strain was isolated from seawater. The isolate was identified as Microbulbifer sp. SD-1 by 16S rRNA sequencing analysis. The optimal pH and temperature for growth were 6.0 and $30^{\circ}C$, respectively, and growth was possible at pH 9.0 and $60^{\circ}C$. The isolate required 5% NaCl for optimal growth and showed 45% growth activity without NaCl. Agar concentrations of 0-0.4% in the medium did not affect growth. Thin-layer chromatography analysis revealed that this strain could degrade agar into a monosaccharide and oligosaccharide, which may have industrial applications.

Biochemical Characterization of α-Galactosidase-Producing Thermophilic Bacillus coagulans KM-1 (α-Galactosidase를 생산하는 고온성 Bacillus coagulans KM-1 균주의 생화학적 특성)

  • Nam, Ki Ho;Jang, Mi Soon;Park, Hee Yeon;Koneva, Elena
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.516-521
    • /
    • 2014
  • A bacterium producing ${\alpha}$-galactosidase (${\alpha}$-$\small{D}$-galactoside galactohydrolase, EC 3.2.1.22) was isolated. The isolate, KM-1 was identified as Bacillus coagulans based on its 16S rRNA sequence, morphology, and biochemical properties. ${\alpha}$-Galactosidase activity was detected the culture supernatant of B. coagulans KM-1. The bacterium showed the maximum activity for hydrolyzing para-nitrophenyl-${\alpha}$-$\small{D}$-galactopyranoside (pNP-${\alpha}Gal$) at pH 6.0 and $50^{\circ}C$. It hydrolyzed oligomeric substrates such as melibiose, raffinose, and stachyose liberating a galactose residue, indicating that the B. coagulans KM-1 ${\alpha}$-galactosidase hydrolyzed ${\alpha}$-1,6 linkage. The results suggest that the decreased stachyose and raffinose contents in fermented soybean meal are due to the ${\alpha}$-galactosidase activity.

Molecular Cloning and the Nucleotide Sequence of a Bacillus sp. KK-l $\beta$-Xylosidase Gene

  • Chun, Yong-Chin;Jung, Kyung-Hwa;Lee, Jae-Chan;Park, Seung-Hwan;Chung, Ho-Kwon;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 1998
  • A gene coding for ${\beta}$-xylosidase from thermophilic xylanolytic Bacillus sp. KK-1 was cloned into Escherichia coli using plasmid pBR322. Recombinant plasmid DNAs were isloated from E. coli clones which were capable of hydrolyzing 4-methylumbelliferyl-${\beta}$-D xylopyranoside. Restriction analysis showed the DNAs to share a common insert DNA. Xylo-oligosaccharides, including xylotriose, xylotetraose, xylopentaose, and xylobiose were hydrolyzed to form xylose as an end product by cell-free extracts of the E. coli clones, confirming that the cloned gene from strain KK-1 is ${\beta}$-xylosidase gene. The ${\beta}$-xylosidase gene of strain KK-1 designated as xylB was completely sequenced. The xylB gene consisted of an open reading frame of 1,602 nucleotides encoding a polypeptide of 533 amino acid residues, and a TGA stop codon. The 3' flanking region contained one stem-loop structure which may be involved in transcriptional termination. The deduced amino acid sequence of the KK-1 ${\beta}$-xylosidase was highly homologous to the ${\beta}$-xylosidases of Bacillus subtilis and Bacillus pumilus, but it showed no similarity to a thermostable ${\beta}$-xylosidase from Bacillus stearothermophilus.

  • PDF

Overexpression, Purification, and Biochemical Characterization of the Thermostable NAD-dependent Alcohol Dehydrogenase from Bacillus stearothermophilus

  • Shim, Eun-Jung;Jeon, Sang-Hoon;Kong, Kwang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.738-744
    • /
    • 2003
  • The gene ADH encoding NAD-dependent alcohol dehydrogenase from Bacillus stearothennophilus was cloned and overexpressed as a GST fusion protein at a high level in Escherichia coli. The expressed fusion protein was purified simply by glutathione affinity chromatography. GST fusion protein was then cleaved by thrombin, while soluble enzyme was further purified by glutathione affinity chromatography. The recombinant enzyme had the same elctrophoretic mobility as the native enzyme from Bacillus stearothennophilus. The recombinant enzyme catalyzed the oxidation of a number of alcohols and exhibited high activities towards secondary alcohols. The $K_m\;and\;V_{max}$ values of the recombinant enzyme for ethanol were 5.11 mM and 61.35 U/mg, respectively. Pyridine and imidazole notably inhibited the enzymatic activity. The activity of the recombinant enzyme optimally proceeded at pH 9.0 and $70^{\circ}C$. The midpoint of the temperature-stability curve for the recombinant enzyme was approximately $68^{\circ}C$, and the enzyme was not completely inactivated even at $85^{\circ}C$. The recombinant enzyme showed a high resistance towards denaturing agents (0.05% SDS, 0.1 M urea). Therefore, due to its stability and relatively broad substrate specificity, the recombinant enzyme could be utilized in bio-industrial processes and biosensors.

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini;Revathi, Masilamani;Yadav, Amit;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1501-1509
    • /
    • 2012
  • A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.

Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids

  • Suzuki, Hirokazu;Yoshida, Ken-Ichi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1279-1287
    • /
    • 2012
  • We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, $10^{-5}-10^{-3}\;recipient^{-1}$). pSTE33T showed lower efficiency ($10^{-7}-10^{-6}\;recipient^{-1}$) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.

Biosynthetic Regulation of Intracellular Invertase from Alkalophilic and Thermoplilic Bacillus cereus TA-11 (호알칼리성, 고온성 Bacillus cereus TA-11으로 생산된 세포내 Invertase의 생합성 조절)

  • Yi, Sung-Hun;Song, Jung-Eun;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.18 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • Regulation of invertase biosynthesis was studied with alkalophilic and thermophilic Bacillus cereus TA-11. Biosynthesis of invertase in Bacillus cereus TA-11 was effectively induced in the presence of 10 mM of sucrose for 180 min and 25 mM of raffinose for 90 min, respectively. Glucose repressed the invertase induction by sucrose and as late addition time of glucose, invertase formation was increased, indicating that glucose repression was occurred by inducer exclusion. Catabolite repression was not reduced by the addition of cAMP for 180 min of induction.

  • PDF