• 제목/요약/키워드: thermoforming

검색결과 52건 처리시간 0.029초

열형성 기술을 활용한 임시 의치 수복 증례 (The case of interim denture applying for thermoforming technique)

  • 윤준구;송영균
    • 구강회복응용과학지
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2016
  • 사고로 인하여 갑자기 치아를 상실하게 된 환자에게 정신적 안정, 심미성과 기능을 회복하기 위하여 빠른 임시 보철물 수복이 필요하다. 본 증례는 외상으로 인하여 예상치 못한 치아 상실이 발생한 환자에게 열형성 기술(thermoforming technique)을 이용한 수복을 시행하여 만족할 만한 결과를 얻었기에 보고하는 바이다.

3-Dimensional Thermoforming Computer Simulation Considering Orthotropic Property of Film

  • Son, Hyun-Myung;Yoon, Seok-Ho;Lee, Ki-Ho;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제57권3호
    • /
    • pp.114-120
    • /
    • 2022
  • The tensile properties of the extruded PC film were measured in the extrusion direction and perpendicular to the extrusion direction. The measured properties were the elastic modulus and Poisson's ratio at the glass transition temperature of PC. The measured orthotropic properties of the film were used for the computer simulation of vacuum forming. In this simulation, three mold shapes were tested: dome, trapezoid, and cubic, and the vacuum was applied between the mold surface and the heated film. The stress, strain, thickness, and stretch ratio distributions of the film in different mold shapes were observed and compared. The thermoforming simulation method used in this study and the obtained results, considering the determined orthotropic properties, can be applied to the thermoforming of various three-dimensional shapes.

시뮬레이션을 통한 열성형에서의 필름 평균두께 계산 (Calculation of Average Thickness of film in Thermoforming by Simulation)

  • 이순영;김선경
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.52-56
    • /
    • 2023
  • In this study, numerical simulation of the thermoforming process of PVC film material was performed using PAMForm. For this purpose, tensile tests were performed at various temperatures and the coefficients of the G'Sell model were obtained and used. As a result of the analysis, it was confirmed that the thickness decreased by up to 55% in the section where the film was in contact with the vertical direction and was greatly stretched. If the thickness is excessively thin, the part may become structurally weak, so in the thermoforming process, numerical simulation of the thickness in advance is expected to be helpful in successfully performing the process.

전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구 (A study on the molding of dome shaped plastic parts embedded with electronic circuits)

  • 성겸손;이호상
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

Effects of thermoforming on the physical and mechanical properties of thermoplastic materials for transparent orthodontic aligners

  • Ryu, Jeong-Hyun;Kwon, Jae-Sung;Jiang, Heng Bo;Cha, Jung-Yul;Kim, Kwang-Mahn
    • 대한치과교정학회지
    • /
    • 제48권5호
    • /
    • pp.316-325
    • /
    • 2018
  • Objective: The aim of this systematic multiscale analysis was to evaluate the effects of thermoforming on the physical and mechanical properties of thermoplastic materials used to fabricate transparent orthodontic aligners (TOAs). Methods: Specimens were fabricated using four types of thermoplastic materials with different thicknesses under a thermal vacuum. Transparency, water absorption and solubility, surface hardness, and the results of three-point bending and tensile tests were evaluated before and after thermoforming. Data were analyzed using one-way analysis of variance and Student's t-test. Results: After thermoforming, the transparency of Duran and Essix A+ decreased, while the water absorption ability of all materials; the water solubility of Duran, Essix A+, and Essix ACE; and the surface hardness of Duran and Essix A+ increased. The flexure modulus for the 0.5-mm-thick Duran, Essix A+, and eCligner specimens increased, whereas that for the 0.75-/1.0-mm-thick Duran and eClginer specimens decreased. In addition, the elastic modulus increased for the 0.5-mm-thick Essix A+ specimens and decreased for the 0.75-mm-thick Duran and Essix ACE and the 1.0-mm-thick Essix ACE specimens. Conclusions: Our findings suggest that the physical and mechanical properties of thermoplastic materials used for the fabrication of TOAs should be evaluated after thermoforming in order to characterize their properties for clinical application.

열진공성형 공형조건이 적층필름의 두께분포에 미치는 영향 (Effects of Processing Conditions on Thickness Distribution for a Laminated Film during Vacuum-Assisted Thermoforming)

  • 유영길;이호상
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.250-256
    • /
    • 2011
  • Vacuum-assisted thermoforming is one of the critical steps for the successful application of film insert molding(FIM) to parts of complex shapes. If the thickness distribution of the formed film is non-uniform, cracking, deformation, warping, and wrinkling can easily occur at the injection molding stage. In this study, the effects of processing parameters, which include the film heating time, plug depth, plug speed and vacuum delay time, on film thickness distribution were investigated. It was found that the film thickness at the part sidewall decreases with increasing the film heating time and plug depth, but the thickness at the bottom was found to exhibit the opposite behavior. The film thickness of the sidewall was observed to increase at higher plug speed and vacuum delay time of 0 ~ 0.3sec.

열성형 진동판의 미세주름 두께변화가 구조강성 및 진동특성에 미치는 영향 분석 (Effect of Thickness Change in Corrugations on the Stiffness and Vibration Characteristics of a Thermoformed Diaphragm)

  • 김경민;박근
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.10-15
    • /
    • 2014
  • Recently, micro-speakers have attracted much attention due to their increasing demand in mobile devices. Micro-speakers use polymer diaphragms, which are manufactured from thin polymer film by the thermoforming process. The diaphragm is generally designed to be a circular membrane with a cross section consisting of a double dome structure, and a number of corrugations are located in the outer region to produce better sound quality. In the current study, a finite element (FE) analysis is performed for thermoforming, and the resulting thickness reduction in the corrugation regions is estimated. The estimated thickness distribution is used in further structural and modal FE analyses, from which the effects of local thickness reduction on the stiffness and vibration characteristics are determined.

Time-dependent Optimal Heater Control in Thermoforming Preheating Using Dual Optimization Steps

  • Li, Zhen-Zhe;Heo, Kwang-Su;Seol, Seoung-Yun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.51-56
    • /
    • 2008
  • Thermoforming is one of the most versatile and economical processes available for shaping polymer products, but obtaining a uniform thickness of the final product using this method is difficult. Heater power adjustment is very important because the thickness distribution depends strongly on the distribution of the sheet temperature. In this paper, the steady-state optimum distribution of heater power is first ascertained by a numerical optimization to obtain a uniform sheet temperature. The time-dependent optimal heater input is then determined to decrease the temperature difference through the direction of the thickness using the response surface method and the D-optimal method. The optimal results show that the time-dependent optimum heater power distribution gives an acceptable uniform sheet temperature in the forming temperature range by the end of the heating process.