• Title/Summary/Keyword: thermoelectric thin film

Search Result 71, Processing Time 0.033 seconds

Design of the Platform for a Nanoparticle thin Film Thermoelectric Device transforming Body Heat into Electricity (체온 이용이 가능한 나노입자 박막 열전소자의 플랫폼 개발연구)

  • Yang, Seunggen;Cho, Kyoungah;Choi, Jinyong;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.174-176
    • /
    • 2016
  • In this study, we maximize the temperature difference between the ends of a HgTe nanoparticle(NP) thin film on a thermoelectric platform with a through-substrate via. The thermoelectric characteristics of the HgTe NP thin film show p-type behavior and its Seebeck coefficient is $290{\mu}V/K$. In addition, we demonstrate the possibility of wearable thermoelectric devices transforming body heat into electricity from through-substrate via thermoelectric platforms on human skin.

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Properties of Thermoelectric Power in PbS Thin Films by Chemical Bath Deposition (화학 반응에 의한 PbS 박막의 열기전력 특성)

  • Cho, Jong-Rae;Cho, Jung-Ho;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.21-24
    • /
    • 2000
  • Properties of thermoelectric power in PbS thin films by chemical bath deposition were investigated The qualified PbS thin film was gained with the amounts of Thiourea($4-8ml/{\ell}$ ), Triethanolamine (1-2ml) and NaOH(l0ml). The molecular ratio of Pb and S was 3 : 7. Satisfied crystallization rate and deposition rate of PbS were greater at $50^{\circ}C$ than at $30^{\circ}C$. The constant of thermoelectric power in PbS was nearly $ 500uv/^{\circ}k$. The PbS thin film was changed from p-type to n-type semiconductor at around $200^{\circ}C$. In case of heat treatment at $300^{\circ}C$, the sample kept the characteristic of p-type semiconductors up to $250^{\circ}C$.

  • PDF

Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing (Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과)

  • Kim, Dong-Ho;Lee, Gun-Hwan
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.292-296
    • /
    • 2006
  • Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

Fabrication of a Micro Cooler using Thermoelectric Thin Film (열전박막을 이용한 마이크로 냉각소자 제작)

  • Han, S.W.;Choi, H.J.;Kim, B.I.;Kim, B.M.;Kim, D.H.;Kim, O.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

Effect of Annealing Temperature on Thermoelectric Properties of Ag2Se Nanoparticle Thin Films (저온 열처리 공정에 따른 Ag2Se 나노입자 박막의 열전특성)

  • Yang, Seunggen;Cho, Kyoungah;Yun, Junggwon;Choi, Jinyong;Kim, Sangsig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.611-616
    • /
    • 2016
  • In this study, we synthesized $Ag_2Se$ nanoparticles (NPs) in an aqueous solution and investigated the thermoelectric characteristics of $Ag_2Se$ NPs thin films on plastic substrates. Regardless of thermal annealing treatment, all the $Ag_2Se$ NPs thin films show the negative Seebeck coefficients, indicating the n-type characteristics. As the annealing temperature increases, the electric conductivity increases while the Seebeck coefficient decreases. The electric conductivity of the thin film annealed at $180^{\circ}C$ is larger by $10^6$ times, compared with the as-prepared thin film, And the maximum power density for the thin film annealed at $180^{\circ}C$ is calculated to be $44{\mu}W/cm^2$.

Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials (비정질 산화물 반도체의 열전특성)

  • Kim, Seo-Han;Park, Cheol-Hong;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

Thermoelectric Properties of $Bi_2Te_3$, $Sb_2Te_3$ by varying annealing temperature (Thermopile, 펠티어소자에 적용할 $Bi_2Te_3$, $Sb_2Te_3$의 annealing 온도변화에 따른 박막특성 분석)

  • Kim, Hyeon-Sik;Cho, Yeon-Shik;Park, Hyo-Derk;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.212-212
    • /
    • 2009
  • Thermoelectric devices were used to wide range of application. At present, increasing the efficiency of these devices, in particular, through the preparation of materials showing a high thermoelectric figure of merit, Z, $Bi_2Te_3$ and $Sb_2Te_3$ thin films on Si substrates are deposited by flash evaporation method for thermopile sensor applications. In order to enhance the thermoelectric properties of the thin film, annealing in high vacuum is carried out in the temperature range from 200 to $350^{\circ}C$. The microstructure of the film is investigated by XRD and SEM. The resistivity and Seebeck coefficient of the films are measured by Van der Pauw method and hot probe method respectively. At elevating annealing temperature, the crystallinity and thermoelectrical properties of films are improved by increasing the size of grains. At excessive high annealing temperatures, it is shown that Seebeck coefficient of films is decreased because of Te evaporation. By optimizing the annealing conditions, it is possible to obtain a high performance thin film with a thermoelectric properties.

  • PDF

Simulation of Horizontal Thin-film Thermoelectric Cooler for the Mobile Electronics Thermal Management (모바일 전자기기의 열점 제어를 위한 수평형 박막 열전 냉각 소자의 모사 해석)

  • Park, Sangkug;Park, Hong-Bum;Joo, Young-Chang;Joo, Youngcheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.17-21
    • /
    • 2017
  • Horizontal thin-film thermoelectric cooler has been simulated using a commercial software (ANSYS Workbench Thermal-electric). The thermoelectric cooler consists of thin-film n-type $Bi_2Te_3$, p-type $Sb_2Te_3$ thermoelectric elements, and Au electrode, respectively. The hot spot was placed under the center of device which represents Joule heating. Numerical analysis was conducted by geometric variable, and a maximum temperature difference of $13^{\circ}C$ was obtained. As from the simulation parameters, we presented an optimized design for high efficiency cooling.