• 제목/요약/키워드: thermoelectric properties

Search Result 368, Processing Time 0.043 seconds

Effects of Cd substitution on the superconducting properties of (Pb0.5Cu0.5-xCdx)Sr2(Ca0.7Y0.3)Cu2Oz

  • Lee, Ho Keun;Kim, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2018
  • To understand the effects of Cd substitution for Cu, $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ (x = 0 ~ 0.5) compounds were synthesized and the structural and superconducting properties of the compounds were characterized. Resistivity data revealed that superconducting transition temperature rises initially up to x = 0.25 and then decreases as the Cd doping content increases. Room-temperature thermoelectric power decreases at first up to x = 0.25 and then increases with higher Cd doping content, indicating that the change in $T_c$ is mainly caused by the change in the hole concentration on the superconducting planes by the Cd doping. The non-monotonic dependence of the lattice parameters and the transition temperature with Cd doping content is discussed in connection with the possible formation of $Pb^{+2}$ ions and the removal of excess oxygen caused by Cd substitution in the charge reservoir layer. A correlation between transition temperature and c/a lattice parameter ratio was observed for the $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ system.

Electrical Properties of Pure and Cadmium-Doped Indium Sesquioxide

  • Lee, Sung-Han;Lee, Jong-Hwan;Kim, Keu-Hong;Jun, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.418-422
    • /
    • 1989
  • Cadmium-doped indium sesquioxide systems with a variety of CdO mol % were prepared to investigate the effect of doping on the electrical properties of indium sesquioxide. The electrical conductivities of pure $In_2O_3$ and Cd-doped $In_2O_3$ systems were measured in the temperature range from 25 to $1200^{\circ}C$ and $P_O_2$ range from $10^{-7}$ to $10^{-1}$ atm, and the thermoelectric power was measured in the same temperature range. The electrical conductivity and thermopower decreased with increasing CdO mol % indicating that all the samples are n-type semiconductors. The electrical conductivities of pure $In_2O_3$ and lightly doped $In_2O_3$ were considerably affected by the chemisorption $O_2$ at temperatures of 400 to $560^{\circ}C$ and then gaseous oxygen was reversibly chemisorbed at the temperature. The predominant defects in $In_2O_3$ are believed to be triply-charged interstitial indiums at temperatures above $560^{\circ}C$ and oxygen vacancies below $560^{\circ}C$. In Cd-doped $In_2O_3$ systems, cadmium acts as an electron acceptor and inhibits the transfer of lattice indium to interstitial sites, which give rise to the decrease of the electrical conductivity.

Electrical Properties of n-type Co-doped Fe-Si Alloy (Co 첨가 Fe-Si n형 반도체의 전기적 특성)

  • Pai, Chul-Hoon;Kim, Jeung-Gon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.860-865
    • /
    • 2009
  • The effect of Co additive on the electrical properties of Fe-Si alloys prepared by a RF inductive furnace was investigated. The electrical conductivity and Seebeck coefficient were measured as a function of the temperature under an Ar atmosphere to evaluate their applicability to thermoelectric energy conversion. The electrical conductivity of the specimens increased as the temperature increased, showing typical semiconducting behavior. The electrical conductivity of Co-doped specimens was higher than that of undoped specimens and increased slightly as the amount of Co additive increased. This is most likely due to the difference in the carrier concentration and the amount of residual metallic phase ${\varepsilon}$-FeSi (The ${\varepsilon}$-FeSi was detected in spite of an annealing treatment of 100 h at $830^{\circ}C$). Additionally, metallic conduction increased slightly as the amount of Co additive increased. On the other hand, Co-doped specimens showed a lower Seebeck coefficient due to the metallic phase. The power factor of Co-doped specimens was higher than that of undoped specimens. This would be affected more by the electrical conductivity compared to the Seebeck coefficient.

Effects of Evaporation Processes and a Reduction Annealing on Thermoelectric Properties of the Sb-Te Thin Films (증착공정 및 환원분위기 열처리가 Sb-Te 박막의 열전특성에 미치는 영향)

  • Bae, Jae-Man;Kim, Min-Young;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • Effects of evaporation processes and a reduction annealing on thermoelectric properties of the Sb-Te thin films prepared by thermal evaporation have been investigated. The thin film evaporated by using the powders formed by crushing a $Sb_2Te_3$ ingot as an evaporation source exhibited a power factor of $2.71{\times}10^{-4}W/m-K^2$. The thin film processed by evaporation of the mixed powders of Sb and Te as an evaporation source showed a power factor of $0.12{\times}10^{-4}W/m-K^2$. The thin film fabricated by coevaporation of Sb and Te dual evaporation sources possessed a power factor of $0.73{\times}10^{-4}W/m-K^2$. With a reduction annealing at $300^{\circ}C$ for 2 hrs, the power factors of the films evaporated by using the $Sb_2Te_3$ ingot-crushed powders and coevaporated with Sb and Te dual evaporation sources were remarkably improved to $24.1{\times}10^{-4}W/m-K^2$ and $40.2{\times}10^{-4}W/m-K^2$, respectively.

Thermoelectric Properties of the Hot-Pressed ($Pb_{1-x}Sn_x$)Te Fabricated by Mechanical Alloying (기계적 합금화 공정으로 제조한($Pb_{1-x}Sn_x$)Te 가압소결체의 열전특성)

  • Lee, Jun-Su;Choe, Jae-Sik;Lee, Gwang-Eung;Hyeon, Do-Bin;Lee, Hui-Ung;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1055-1060
    • /
    • 1998
  • Thermoelectric properties of ($Pb_{1-x}Sn_x$)Te ($0\leq{x}\leq{0.4}$) alloys, fabricated by mechanical alloying and hot pressing, were investigated with variation of the SnTe content. For the hot-pressed PbTe and ($Pb_{0.9}Sn_{0.1}$)Te. transition from p-type to n-type occurred at $200^{\circ}C$ and $300^{\circ}C$, respectively. However, the specimens containing SnTe more than 0.2mole exhibited p-type conduction up to 450'C. In extrinsic conduction region, the Seebeck coefficient and electrical resistivity of the hot-pressed ($Pb_{1-x}Sn_x$)Te decreased with increasing the SnTe content. The temperature at which the hot-pressed (Pbl-,Sn,)Te exhibited a maximum figure-of-merit was shifted to higher temperature with increasing the SnTe content The hot-pressed (Pbo ,Sno dTe exhibited a maximum figure-of-merit of $0.68\times10_{-3}/K$ at $200^{\circ}C$.

  • PDF

Thermoelectric Properties of the Hot-Pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ Alloys with the $Bi_{2}Se_{3}$ Content ($Bi_{2}Se_{3}$ 함량에 따른 Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$)

  • Kim, Hee-Jeong;Oh, Tae-Sung;Hyun, Do-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.408-412
    • /
    • 1998
  • Thermoelectric properties of Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25) prepared by mechanical alloying and hot pressing, were investigated. Contrary to the p-type behavior of single crystals, the hot-pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ exhibited ntype conduction without addition of donor dopant. When $Bi_2(Te_{0.85}Se_{0.15})_3$powders were annealed in (50% $H_2$ + 50% Ar) atmosphere, the hot-pressed specimen exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Among the Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$fabricated by mechanical alloying and hot pressing, $Bi_2(Te_{0.85}Se_{0.15})_3$ exhibited a maximum figure-of-merit of 1.92 $\times$ $lO^{-3}$/K.

  • PDF

A study on fundametal properties of thermoelectric power plant pond-ash in Korea (국내 화력발전소 매립회의 기초물성에 관한 연구)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Jin-Sung;Kim, Joo-Hyung;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.841-844
    • /
    • 2008
  • Non-refining fly ash and bottom ash, the byproducts generated from the coal-fired power stations, have usually been disposed of in onshore ash disposal sites. With an increase of power consumption due to industrial development, the generation of coal ash has been growing tremendously. Current insufficiency of disposal sites and environmental concerns over newly-built disposal sites have also led a growing need to utilize the coal ash. Accordingly, this paper compares and analyzes the fundamental properties of the coal ash collected from each disposal sites in order to increase the usability of the coal ash generated from coal-fired power stations. The results of the study indicate that coal ash shall be separately applied by the properties for each intended use as the ash greatly differs in its properties depending on the site of disposal. In particular, it is shown that the overall evaluation on the ash shall be necessary as the quality might be varied by the change of absorptance when applied as an aggregate for concrete. From the examination on the salt content, it has been observed that the ash can be applied as an aggregate for concrete only after more than 3 times of washing process.

  • PDF

Engineering Properties of Fly Ash-WFS Mixed Materials as a Flow able Backfill (유동성 뒷채움재로 사용하기 위한 플라이에쉬-폐주물사 혼합재료의 특성 연구)

  • 이관호;이인모;조재윤;윤여준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.489-496
    • /
    • 1999
  • The objective of this study is to present engineering properties required in use of co-mixtures of fly ash and WFS(Waste Foundry Sand)'s, which are Presently used as fill or (lovable backfill. The fly ash, generated at the Tae-An thermoelectric power plant was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Laboratory experiments were peformed to obtain the physical properties of the co-mixture of fly ash and WFS. The range of permeability for all the co-mixtures was from 3.0×10/sup -3/㎝/s to 6.0×10/sup -5/㎝/s. The unconfined strength of the 7-day cured specimens composed of Green Sand reached 94% of that of 28-day cured specimens but for the 7-day cured specimens composed of, respectively, Furnace Sand and Coated Sand, only 64% and 66% of the strength of the 28-day cured specimens were reached. Results of the consolidated-untrained triaxial test showed that the specimens composed of Furnace Sand showed a distinct increase of the internal friction angle, while the other specimens showed negligible increase. In the case of 28-day cured specimens, specimens composed of Furnace Sand showed an internal friction angle of 41.8°, while specimens of Green and Coated Sand showed those of 33.5° and 35.0°, respectively. From the shrinkage test, the shrinkage ratios of all specimens did not exceed 0.25%.

  • PDF

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

A Study on the WFS Co-mixtures by Small Scale Retaining Wall Test (모형옹벽실험을 이용한 폐주물사 혼합재의 지반공학 적용성 연구)

  • 조재윤;이관호;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.419-426
    • /
    • 2000
  • The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0${\times}$10$\^$-3/ cm/s to 6.0${\times}$10$\^$-5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$. The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed.

  • PDF