• Title/Summary/Keyword: thermodynamic parameters

Search Result 495, Processing Time 0.023 seconds

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

A Study of the Ionic Association of the Substituted N-Methyl Pyridinium Iodides (I). N-Methyl Pyridinium Iodide in Ethanol-Water Mixture

  • Jee, Jong-Gi;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1984
  • The ionic association constant (K) of N-methyl pyridinium iodide (NMPI) ion in several ethanol-water mixtures were determined by the combination of UV spectroscopy and conductance measurements using the Shedlovsky function as a correction factor. The measurement of electrical conductance and UV absorption were performed in 95, 90, 80 and 60 volume percentages of ethanol in the solvent mixture at 15, 25, 35 and 45 $({\pm}0.1)^{\circ}C$. The ion size parameter $(r_A+_D-)$ and the dipole moment $({\mu}_A+_D-)$ of NMPI ion were obtained from he linear plots of ln K vs. (1/D) and (D-1)/(2D+1), respectively. These ${\mu}_A+_D-$ values were in good agreement with the values of transition moment calculated from the equation, ${\mu}_{nm}=6.5168{\times}10^{-2}{\times}({\varepsilon}_{max}{\frac{\bar{\nu}_{\frac{1}{2}}}{\bar{\nu}_{max}})^{\frac{1}{2}}$ (Debye) which we have derived. The thermodynamic parameters indicate (1) that the water dipoles have an ordered rearrangement around the dipolar NMPI ions rather than the configuration existing in bulk free waters; and (2) that the equilibrium state between NMPI ion and its component ions are controlled by entropy.

Charge-Transfer Complexing Properties of 1-Methyl Nicotinamide and Adenine in Relation to the Intramolecular Interaction in Nicotinamide Adenine Dinucleotide (NAD$^+$)

  • Park, Joon-woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 1985
  • The charge-transfer complexing properties of 1-methyl nicotinamide (MNA), an acceptor, and adenine, a donor, were investigated in water and SDS micellar solutions in relation to the intramolecular interaction in nicotinamide adenine dinucleotide ($NAD^+$). The spectral and thermodynamic parameters of MNA-indole and methyl viologen-adenine complex formations were determined, and the data were utilized to evaluate the charge-transfer abilities of MNA and adenine. The electron affinity of nicotinamide was estimated to be 0.28 eV from charge-transfer energy $of{\sim}300$ nm for MNA-indole. The large enhancement of MNA-indole complexation in SDS solutions by entropy effect was attributed to hydrophobic nature of indole. The complex between adenine and methyl viologen showed an absorption band peaked near 360 nm. The ionization potential of adenine was evaluated to be 8.28 eV from this. The much smaller enhancement of charge-transfer interaction involving adenine than that of indole in SDS solutions was attributed to weaker hydrophobic nature of the donor. The charge-transfer energy of 4.41 eV (280 nm) was estimated for nicotinamide-adenine complex. The spectral behaviors of $NAD^+$ were accounted to the presence of intramolecular interaction in $NAD^+$, which is only slightly enhanced in SDS solutions. The replacement of nicotinamide-adenine interaction in $NAD^+$ by intermolecular nicotinamide-indole interaction in enzyme bound $NAD^+$, and guiding role of adenine moiety in $NAD^+$ were discussed.

Hydrogenation Properties of MgH2-CaO Composites Synthesized by Hydrogen-Induced Mechanical Alloying

  • Kim, Min Gyeom;Han, Jeong-Heum;Lee, Young-Hwan;Son, Jong-Tae;Hong, Tae Whan
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.829-834
    • /
    • 2018
  • Although magnesium-based alloys are attractive materials for hydrogen storage applications, their activation properties, hydrogenation/dehydrogenation kinetics, thermodynamic equilibrium parameters, and degradation characteristics must be improved for practical applications. Further, magnesium poses several risks, including explosion hazard, environmental pollution, insufficient formability, and industrial damage. To overcome these problems, CaO-added Mg alloys, also called Eco-Mg (environment-conscious Mg) alloys, have been developed. In this study, $Eco-MgH_x$ composites were fabricated from Mg-CaO chips by hydrogen-induced mechanical alloying in a high-pressure atmosphere. The balls-to-chips mass ratio (BCR) was varied between a low and high value. The particles obtained were characterized by X-ray diffraction (XRD), and the absorbed hydrogen was quantified by thermogravimetric analysis. The XRD results revealed that the $MgH_2$ peaks broadened for the high BCR. Further, PSA results revealed particles size were decreased from $52{\mu}m$ to $15{\mu}m$.

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.536-545
    • /
    • 2019
  • An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.

Preliminary Performance Analysis of a Dual Combustion Ramjet Engine (이중연소 램제트 엔진의 예비 성능해석)

  • Byun, Jong-Ryul;Ahn, Joong-Ki;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.318-325
    • /
    • 2011
  • In order to understand the operation characteristics and major design parameters of a dual combustion ramjet engine, a fundamental analysis model based on gasdynamics and thermodynamic theories was established. The preliminary performance analysis was accomplished and the results clearly describe the intimate relationship between air inlets, gas generator, and supersonic combustor. The methodology presented provides a means for quantitatively determining the geometries of the gas generator and supersonic combustor and assessing the effects on performance of each of the engine components. Also the design results for a basic configuration were provided.

  • PDF

Separate Type Rotary Engine Cycle Analysis (분리형 로터리엔진 사이클 해석)

  • Ki, Dockjong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • A separate type rotary engine consisting of a compressor and an expander is under development. The engine motoring, compressor pressure, and fuel combustion have been tested with the initial prototype for operability checks of the mechanism. This paper describes an engine cycle analysis method designed specifically for this new-concept engine. The unique operational mechanism of the engine and the thermodynamic properties of each step of air intake, compression, filling of combustion chamber, combustion, expansion and exhaust were analyzed. The cycle efficiencies of this engine according to various engine design parameters as well as the cooling effect of compressed air between the compressor and expander can be easily calculated with this method; further, some case studies are presented in this paper.

Comparative study on Corrosion Inhibition of Vietnam Orange Peel Essential Oil with Urotropine and Insight of Corrosion Inhibition Mechanism for Mild Steel in Hydrochloric Solution

  • Bui, Huyen T.T.;Dang, Trung-Dung;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.69-81
    • /
    • 2019
  • The corrosion inhibiting mechanism of Vietnam orange peel essential oil (OPEO) for mild steel in 1 N HCl solution was investigated elaborately. Corrosion inhibition ability of OPEO was characterized by electrochemical polarization, electrochemical impedance spectroscopy (EIS), and weight loss method. In the corrosive solution, OPEO worked as a mixed inhibitor and the inhibition efficiency of OPEO increased with the increase of its concentration. High inhibition efficiencies over 90% were achieved for the concentration of 3 - 4 g/L OPEO, comparable to that of 3.5 g/L urotropine (URO), a commercial corrosion inhibitor for acid media used in industry. By using adsorption isotherm models (Langmuir, Temkin and Frumkin), thermodynamic parameters of adsorption were calculated. The obtained results indicated physical adsorption mechanism of OPEO on the steel surface. The components responsible for the corrosion inhibition activity of OPEO were not only D-limonene, but also other compounds, which contain C=O, C=C, O-H, C-O-C, -C=CH and C-H bonding groups in the molecules.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

The Synergistic Effect of 2-Chloromethylbenzimidazole and Potassium Iodide on the Corrosion behavior of Mild Steel in Hydrochloric Acid Solution

  • Zhou, Liben;Cheng, Weizhong;Wang, Deng;Li, Zhaolei;Zhou, Haijun;Guo, Weijie
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • The synergistic effect of 2-chloromethylbenzimidazole (2-CBI) and potassium iodide (KI) for mild steel in 1 M hydrochloric acid solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that, with the addition of 100 ppm potassium iodide, the inhibition efficiecy (IE) of 100 ppm 2-CBI in 1 M hydrochloric acid had been improved from 91.14% to 96.15%. And synergistic parameter of 100 ppm 2-CBI with different amounts of potassium iodide is always greater than 1. The adsorption of potassium iodide combining with 100 ppm 2-CBI obeys to the Langmuir adsorption isotherm. Thermodynamic adsorption parameters, including ∆G0ads, ∆Ha and ∆Sa of the adsorption of the combinned inhibitor, as well as the Ea of the mild steel corrosion in 1 M HCl with the combinned inhibitor, were calculated.